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Preface

This thesis has been prepared at the Materials Department, Risø
National Laboratory, and at the Institute of Mathematical Modelling, the
Technical University of Denmark, in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in engineering.

The main focus of the work presented in this thesis is on the
development of a fully automated system for measuring local lattice
orientations in polycrystalline materials using electron backscattering
patterns. Methodology and nomenclature from scientific fields such as
mathematical statistics, digital image processing, materials science, and
crystallography are applied in the thesis to a varying degree. It is implied that
the reader has a basic knowledge of at least some of these areas.

Lyngby, June 1994

Niels Christian Krieger Lassen



vi



vii

Acknowledgements
The author would like to express his sincere appreciation to Dr. Dorte

Juul Jensen and Professor Knut Conradsen for their encouraging and
extremely competent guidance during the course of this work. I am also
grateful for the excellent research facilities provided at the Materials
Department by Dr. Niels Hansen and at the Institute of Mathematical
Modelling by Professor Knut Conradsen.

I wish to thank my colleagues at the Materials Department of Risø for
contributing to a pleasant and inspiring scientific and social environment. In
particular, I am grateful to Dr. Jørgen B. Bilde-Sørensen for excellent
guidance, helpful discussions and engaging collaboration on the development
of the calibration routine.

I would also like to thank my colleagues at the Image Analysis Group
of the Institute of Mathematical Modelling for providing inspiration and
being extremely helpful. In particular, I wish to express my gratitude to Dr.
Jens Michael Carstensen for his guidance and good fellowship and to Dr.
Michael Grunkin and Dr. Rasmus Larsen for inspiration and pleasant
collaboration.

Finally, I want to acknowledge the Danish Research Academy and the
Risø National Laboratory for providing me with financial support and
equipment to accomplish this project.



viii



ix

Summary
The electron backscattering pattern (EBSP) technique is widely

accepted as being an extremely powerful tool for measuring the
crystallographic orientation of individual crystallites in polycrystalline
materials. Procedures which allow crystal orientations to be calculated on the
basis of the position of the bands or the zone axes of EBSPs have existed for
several years now. Until recently, however, the localization of either the
bands or the zone axes of EBSPs has required the valuable time and attention
of a human operator, thus obviously limiting the amounts of orientation data
that can be collected by this method.

This thesis describes the development and implementation of a system
which enables crystallographic orientations to be obtained fully automatically
through the use of computerized analysis and interpretation of EBSPs. More
specifically, this thesis will describe the design of a pattern recognition
procedure which enables 8 to 12 bands to be localized in typical EBSPs from
a modern system. It will be described, how these automatically localized
bands can be indexed and used for optimal estimation of the unknown crystal
orientations.

A necessary prerequisite for precise determination of crystallographic
orientations from EBSPs is accurate knowledge of three calibration
parameters which describe the position of the point from which the patterns
are emitted relative to the phosphor screen on which they are recorded. This
thesis will describe a novel method by which these calibration parameters can
be estimated with high precision.

The quality of EBSPs provides important information about the
reliability of the measured crystal orientations and about the perfection of the
lattice in which the pattern is generated. A measure which allows the quality
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of EBSPs to be evaluated quantitatively is therefore described.
Presently, little is known about the uncertainty of the lattice orientations

which can be measured from EBSPs. This subject will be discussed in detail
in this thesis. With the application of newly developed statistical methods for
analyzing orientation data it will be shown how the relative precision of
lattice orientations measured from EBSPs can be described. By applying this
methodology to a large number of EBSPs of varying quality it is
demonstrated that the precision of automatically measured crystal orientations
is comparable to the precision obtained, when the positions of four to five
bands are supplied by an experienced and careful operator.
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Resumé
Den såkaldte "electron backscattering pattern" (EBSP) teknik er

almindeligt anerkendt som en meget slagkraftig metode til bestemmelse af
den krystallografiske orientering af de enkelte krystaller i polykrystallinske
materialler. Procedurer, der muliggør bestemmelsen af krystalorienteringer
på basis af positionerne af båndene eller zoneakserne i diffraktionsmønstrene,
har eksisteret i flere år. Indtil for nylig har lokaliseringen af enten båndene
eller zoneakserne i EBSP mønstrene imidlertidigt været varetaget af en
optrænet operatør, hvilket har sat naturlige begrænsninger for den mængde
af krystalorienterings data, der har kunnet opsamles med denne teknik.

Denne afhandling beskriver udviklingen og implementeringen af et
system, der ved hjælp af en fuldstænding computerstyret analyse og
fortolkning af de digitaliserede EBSP billeder, muliggør fuldautomatisk
bestemmelse af krystallografiske orienteringer. Mere specifikt, vil der i denne
afhandling blive beskrevet en mønstergenkendelsesprocedure, der er i stand
til at lokalisere fra 8 til 12 bånd i typiske EBSP billeder fra et moderne
system. Det vil blive beskrevet, hvordan disse automatisk lokaliserede bånd
kan indiceres, og hvorledes den ukendte krystallografiske orientering herefter
kan estimeres optimalt.

En nødvendig forudsætning for at opnå en præcis bestemmelse af
krystalorienteringer fra EBSP billeder er adgangen til præcise estimater af tre
kalibreringsparametre, der beskriver positionen af det punkt, hvorfra
diffraktionsmønstret stammer i forhold til den fosforskærm, hvorpå det er
blevet registreret. Denne afhandling vil beskrive en helt ny metode, hvorved
disse tre kalibreringsparametre kan estimeres med høj præcision.

Kvaliteten af EBSP billederne indeholder vigtig information om
pålideligheden af de målte krystalorienteringer og om graden af perfektion af
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det krystalgitter, hvori diffraktionsmønstret er blevet genereret. Et mål, der
tilvejebringer et kvantitativt mål for kvaliteten af EBSP billeder, er derfor
beskrevet i denne afhandling.

På nærværende tidspunkt vides der kun lidt om den præcision, hvormed
krystalorienteringer kan bestemmes eller rettere måles på basis af EBSP
billeder. Præcisionen af EBSP teknikken vil derfor blive diskuteret indgående
i denne afhandling. Ved anvendelse af nyligt udviklede statistiske metoder til
analyse af orienteringsdata, vil det her blive vist, hvorledes den relative
præcision af krystalorienteringer målt fra EBSP billeder kan beskrives. Denne
præcisionsbeskrivelse er blevet anvendt på et stort antal diffraktionsmønstre
af varierende kvalitet, og det vil blive demonstreret, at præcisionen af
automatisk målte krystalorienteringer er sammenlignelig med den præcision,
der kan opnås, når fire til fem bånd bliver omhyggeligt lokaliseret af en
erfaren og omhyggelig operatør.
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Chapter 1

Introduction

Many materials of great technological importance, notably metals and
ceramics, are polycrystalline. It has long been known that the properties and
behavior of polycrystals are strongly dependent on the orientation and
arrangement of the individual crystallites within the polycrystalline aggregate.
When all possible crystallite orientations do not occur with the same frequency,
and one or several preferred orientations exist, the polycrystalline material is
said to have a texture. Since many of the properties of single crystals are
directionally dependent, there exists a strong correlation between texture and
polycrystal properties. Knowledge of this correlation has made it possible, to
some extent, to tailor material properties for specific needs, by controlling the
texture of the material through appropriate processing. 

Texture is well quantified using the orientation distribution function
(ODF), which describes the volume fraction of crystals with a specific
orientation. The ODF is traditionally calculated from pole figures, determined
experimentally by x-ray or neutron diffraction, and thus obtained from tens of
thousands of crystallites. While the ODF has been quite successful in describing
the correlation between texture and properties it also has a serious limitation. It
contains no information about the spatial arrangement of the crystallites and the
intercrystalline structure of the material. To further the understanding of the
macroscopic effects of texture, it is necessary to obtain this spatial information
and determine what is know as the microtexture: Spatially specific texture
measured on an individual orientation basis. The possibility to measure the
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orientation of  individual crystals, the microtexture, obviously allows a much
more detailed image of the polycrystal to be obtained than the macrotexture
described through the ODF. Not only will this more detailed image further the
understanding of correlations between texture and polycrystal properties, but it
is likely also to greatly improve the understanding of phenomena such as
recrystallization, recovery and grain growth. The ability to directly link features
of the microstructure, such as grain shape and size, with grain orientation, is
extremely useful in the studies of the aforementioned phenomena. Furthermore,
in studies of the relationship between neighboring grains, sometimes referred to
as the mesotexture, and grain boundary geometry, it is essential to be able to
measure the microtexture.

There are currently several techniques available for measuring the
orientation of individual crystallites, though only three or four of them are
frequently used. These techniques are all based on the diffraction of either x-rays
or electrons. For overviews, the reader is referred to Randle (1992), Juul Jensen
(1993), Schwarzer (1990), Humphreys (1988) and Dingley (1981). The
techniques based on x-rays, the back-reflection Laue method and the micro
Kossel x-ray diffraction (MKXD) technique, all suffer from poor spatial
resolution (-10 µm), slow recording of the diffraction pattern, and requires
specialized equipment, but offers instead a relatively low sensitivity to lattice
imperfections and a high precision of the measured orientations. The
microtexture techniques based on electron diffraction are by far the most widely
used, partly because electrons are easier to focus than x-rays. In the transmission
electron microscope (TEM) the techniques based on Kikuchi diffraction
patterns, the micro diffraction (MD) and convergent beam electron diffraction
(CBED) techniques offer a very good spatial resolution (-10 nm for MD, -1nm
for CBED), a low sensitivity to strain and high precision orientation
measurements. However, the TEM-based techniques all suffer from complicated
and tedious specimen preparation and offer only a very small sample area which
greatly limits the number of crystal orientations that can be collected from the
microstructure (the problem regarding the small sample area may partly be
overcome in the future with the development of new specimen preparation
techniques; Klepeis, Benedict & Anderson, 1988). These drawbacks are not, to
the  same extent, found in the microtexture techniques that are available in the
scanning electron microscope (SEM). The selected area channeling pattern
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(SACP) technique, which suffers from a rather poor spatial resolution (-30 µm;
-5µm using dynamic focusing), was previously quite widely used, but it is now
largely being superseded by the electron backscattering pattern (EBSP)
technique. The main advantages of the EBSP technique, in comparison with the
SACP technique, are a much better spatial resolution (-0.5 µm), easier specimen
preparation, smaller sensitivity to crystal imperfections (the dislocation density)
and a diffraction pattern which is easier to interpret because of a larger angular
coverage.

The EBSP technique is now widely accepted as being the most powerful
method for measuring microtexture. Its main advantages are shortly summarized
below:

 High spatial resolution  (-0.5µm)
 High precision of measured orientations (-0.5E)
 Large sample area of  bulk specimen (-100mm2)
 Concurrent microstructure imaging possible
 Fairly uncomplicated specimen preparation
 Rapid measurements of crystal orientations through on-line analysis

In 1987, Dingley and co-workers introduced an on-line computer-assisted
method for obtaining crystal orientations from EBSPs (Dingley, Longden,
Weinbren & Alderman, 1987). Even though this semi-automatic technique, and
similar ones developed later (Schmidt, Bilde-Sørensen & Juul Jensen, 1991)
provides a rapid and convenient means for measuring microtexture, the need for
a trained operator puts restrictions on the amount of data which can be obtained.
For many types of investigations, it is necessary to measure the orientation of
several hundreds or even thousands of  crystallites in order to get statistical
reliability. In such cases, there is an obvious need for a fully automatic
procedure which replaces the operator by a computer. Even in cases where the
type of investigation requires operator involvement (for example when studying
a partly recrystallized sample) it is extremely convenient to let a computer take
care of all the calculations.

The work presented in this thesis was initiated by a desire to develop a
fully automated system for measuring microtexture on the basis of EBSPs. In a
semi-automatic system the operator must perform the following three tasks:
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A. Move the stage or the electron beam to the desired location
B. Localize the bands in the digitized EBSP
C. Check the proposed band indexing

Thus, to obtain a fully automatic system, procedures which will allow a
computer to perform these three tasks must be developed. While it is fairly easy
to make the computer control a motorized stage (task A above), task B is far
more difficult for a computer to perform, and requires the development of
appropriate pattern recognition procedures. In a semi-automatic system for
analyzing EBSPs, the operator has the important task of checking the proposed
band indexing. In order to make the computer perform this task, it is necessary
to modify the indexing techniques that are used in semi-automatic systems.

The following chapters of this thesis will describe the development,
implementation and evaluation of a fully automated system for EBSP analysis.

In chapter 2 the EBSP technique is described, including its historical
background, the set-up, the working conditions of the system and the formation
of EBSPs. 

Chapter 3 describes how crystal orientations can be determined from EBSPs,
how the bands are being indexed and how the system is calibrated. 

Pattern recognition procedures which enable the bands of EBSPs to be localized
and thus allows a fully automatic system to be obtained, is the main subject of
chapter 4. In addition, chapter 4 describes a quantitative measure for the quality
of digitized EBSPs. The possibility of applying this measure in investigations
of partly recrystalized samples is also discussed in this chapter. 

Chapter 5 contains a discussion of the precision by which crystal orientations
can be determined from EBSPs. In particular, results on the relative precision
of both manually and automatically analyzed EBSPs are presented and
compared. The influence of the pattern quality and the number of bands on the
relative precision of measured crystal orientations is also demonstrated in this
chapter. 
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The work and the results presented in this thesis are summarized in the final
conclusion of chapter 6.
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Chapter 2

The EBSP Technique

2.1 Historical Background
The observation of electron backscattering patterns was first reported by

Alam, Blackman & Pashley (1954), who referred to them as high-angle Kikuchi
patterns. Using a highly specialized instrument they were able to record these
patterns on an electron sensitive film. In the 1970's a series of papers by
Venables and co-workers (Venables & Harland, 1973; Venables, 1976;
Venables & bin-Jaya, 1977) described how the patterns could be obtained in the
SEM and used for determination of crystallite orientations. The patterns, now
termed electron backscattering patterns, were recorded on a fluorescent
phosphor screen placed in the specimen chamber and viewed by a low-light TV
camera. The EBSPs were then photographed directly from the screen on which
the video signal was displayed and analyzed on the basis of this photograph.
Obviously, the determination of crystal orientations with such a system was
slow and inconvenient. 

A major advance towards faster and more user-friendly microtexture
determination took place in the 1980's, when Dingley and co-workers developed
an EBSP system which allowed real-time imaging of the patterns and computer-
aided calculation of the crystal orientations (Dingley, Longden, Weinbren &
Alderman, 1987). In this system the patterns are still recorded on a phosphor
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screen and viewed by a low-light TV camera, but the video signal is now send
through a frame store unit for temporal image averaging. This averaging
improves the signal to noise ratio of the recorded pattern. The video signal is
then sent to a computer controlled frame-grabber in such a way that the patterns
can be digitized and accessed by the computer. A trained operator must then
point out the positions of two zone axes and supply their indices as input to a
computer program. On the basis of this input the computer calculates the crystal
orientation and then allows the user to verify the solution by displaying the
position and indices of a number of low index zone axes. A disadvantage of the
software developed by Dingley and co-workers is the requirement of a trained
and experienced operator who must be able to recognize the appearance of
certain low index zone axes in the EBSP. 

The procedure developed by Schmidt and co-workers (Juul Jensen &
Schmidt, 1990; Schmidt, Bilde-Sørensen & Juul Jensen, 1991) represents an
important step towards faster and more user-friendly determination of crystal
orientations from EBSPs. In this procedure the operator must supply the
positions of at least two bands in the pattern. On the basis of the band positions
and on a precalculated look-up table, the program suggests a probable indexing
and displays the corresponding simulated pattern on top of the actual EBSP. The
operator must then accept or reject the proposed solution by visually comparing
the simulated pattern with the real one. This procedure requires very little
training of the operator, and the corresponding computer program is able to
analyze the patterns from materials of all crystal structures. Furthermore, it is
an important advantage of the procedure that it is based on the position of bands,
since the bands are easier to localize through digital image processing
techniques.

2.2 The EBSP Set-up
The set-up of a typical EBSP system is illustrated in figure 2.2.1. To

obtain an EBSP, the scanning electron microscope, in our system a JEOL JSM-
840, is operated in spot mode so that a stationary beam of primary electrons is
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Figure 2.2.1  Illustration of the components in a typical modern EBSD system.

focused on a small area of the specimen. The electrons interact with the
specimen, and a fraction of these are diffracted by the regular arrangement of
atoms. Some of the backscattered electrons then collide with a fluorescent
phosphor screen from which a light signal is emitted. To maximize the fraction
of backscattered electrons the specimen must be tilted so that the angle between
the specimen normal and the incident beam is at least 60E. The light signal from
the phosphor screen has a very low intensity (-10-3 lux), and must therefore be
viewed by an extremely sensitive camera. Traditionally, Silicon Intensified
Target (SIT) cameras have been used for this purpose, but these are probably
soon to be replaced by CCD (Charge Coupled Device) cameras, due to the rapid
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development in this technology. CCD cameras, though presently not quite as
sensitive as the SIT type, offer better resolution and geometric image distortions
are eliminated (Hjelen & Qvale, 1993). These distortions are introduced by the
camera lens installed in front of the SIT camera. An alternative way of removing
such distortions is by using a fiber optic bundle to directly link the phosphor
screen to the SIT camera (Kunze, Wright, Adams & Dingley, 1992). From the
TV camera the video signal is send to a frame store device which digitizes the
signal and performs temporal averaging to reduce the effect of random noise.
The improved video signal is then again digitized by a frame grabber card
installed on a computer. Many modern frame grabbers offer temporal image
averaging and future EBSP systems will therefore not need a separate frame
store unit. The digitized EBSP can now be accessed by the computer and used
in either a semiautomatic computer program that requires operator involvement,
or in a fully automated program, that performs all the required pattern analysis.
Finally, in a fully automated system, the computer must control the position on
the specimen from where the pattern is obtained. In our system this is
accomplished by interfacing the computer with a motorized stage which is able
to move the specimen independently in the microscope x, y and z directions.

The position of the phosphor screen relative to specimen surface affects
both the quality and general appearance of the recorded EBSP. In our set-up, the
camera and the phosphor screen are mounted in the side port of the JEOL JSM-
840 and positioned so that the plane of the phosphor screen is parallel to the
incoming electron beam. This geometrical arrangement, illustrated in figure
2.2.2, was designed by Hjelen (1990) and produces patterns with a very good
contrast. As illustrated in figure 2.2.2., the phosphor screen is rotated around
both the microscope y direction (the tilt angle, usually 70E) and the microscope
z direction (-19E). In an alternative set-up the phosphor screen and the
specimen surface are parallel (the camera and the phosphor screen are mounted
in the rear port of the SEM), but this configuration results in  patterns of a lower
quality.

The angle covered by the EBSP depends on the size of the phosphor
screen and its position relative to the source point. In the configuration
illustrated above the angle captured by the screen will vary slightly in different
directions across the screen, but a reasonable measure for this angle is
2@atan(r/R), where r is the radius of the phosphor screen and R is its distance
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from the source point. The values for our system are approximately 

Figure 2.2.2 The geometrical arrangement of the specimen, phosphor screen
and TV camera. A) Viewed in microscope y direction. B) Viewed in microscope
z direction (from the electron beam).

r/R=25mm/35mm resulting in an angular coverage of 71.1E. This large angle
makes interpretation of the patterns easier, and is an important advantage of the
EBSP technique as compared with other microtexture techniques available in
electron microscopes.  
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2.3 Obtaining EBSPs in the SEM
The backscattered electrons that form the electron backscattering pattern

originate from a small volume below the specimen surface. The depth of this
volume is of the order of 20nm when the electrons are accelerated over 20kV,
and this very thin layer at the specimen surface must be clean and with a
relatively low dislocation density in order to obtain EBSPs. For metallic
materials this is usually accomplished by a mechanical polishing followed by
electropolishing. Generally, the specimen preparation required to obtain EBSPs
from polycrystals is relatively simple, as compared with the other techniques for
microtexture determination. Note also, that specimen preparation techniques
suitable for TEM samples, are usually also well suited for EBSP. For a short
overview on specimen preparation the reader is referred to Randle (1992).

The operating conditions of the microscope strongly affect both the
quality of the backscattered patterns and the size of the volume from which they
originate. The size of the volume in which the backscattered electrons are
generated, is directly related to the spatial resolution of the EBSP technique.
This spatial resolution is usually defined and measured as the distance over
which two patterns overlap, when the electron beam is moved across a well
defined grain boundary. Since the specimen is tilted at least 60E, one would
expect the resolution to be anisotropic and worst in the direction perpendicular
to the tilt axis (the microscope y direction in our set-up as seen in figure 2.2.2).
This turns out to be the case, and at a tilt angle of 70E the resolution is about 3
times worse in the direction perpendicular to the tilt axis compared with the
resolution parallel to the axis. The factor 3 agrees well with what one would
predict from a simple geometrical argument, since the beam diameter at the
specimen surface will be 1/cos(tilt angle) larger perpendicular to the tilt axis
than parallel to the axis. Hjelen (1990) has made a comprehensive study, though
limited to aluminium, on the correlations between the spatial resolution, denoted
d, and different parameters describing the operating conditions of the SEM. The
effect of these parameters is shortly described in the following:

Accelerating Voltage - As the accelerating voltage and thereby the energy of the
primary electrons is increased, d also increases rapidly (the resolution
decreases). However, at low voltages, the patterns become noisy and less
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visible, probably due to a smaller gain from the phosphor screen. Hjelen (1990)
proposed 20kV as a good compromise between resolution and pattern quality
for aluminium. For materials with higher atomic numbers the fraction of
backscattered electrons becomes larger, and it may be advantageous to use a
lower accelerating voltage. Patterns have been observed with voltages down to
4kV (Dingley, 1984).

Beam Current - The effect of increasing the current of the electron beam is an
increased pattern quality, but a lower spatial resolution (d increases). The
increasing value of d is expected, since the diameter of the beam is proportional
to the square root of the beam current. For aluminium, Hjelen (1990) proposes
5nA as an appropriate value.

Tilt Angle - As mentioned above, the specimen must be tilted in order to obtain
a reasonably large fraction of backscattered electrons. Patterns have been
observed with tilt angles down to 45E (Venables & Harland, 1973), but usually
the angle must be in the range 65-85E for good contrast to be obtained. Above
85E the elongation of the probe along the specimen surface results in diffuse
patterns (Dingley, 1984). The spatial resolution in the direction perpendicular
to the tilt axis decreases with increasing tilt angle, whereas the resolution in the
direction of the tilt axis is unaffected by the angle. Hjelen (1990) proposes 70E
as a good compromise for aluminium, but it may be advantageous to reduce the
tilt angle for materials of higher atomic number.

Working Distance - Since the diameter of the electron beam is approximately
proportional to the working distance, it is no surprise that the spatial resolution
decreases as the working distance increases. The shortest working distance
allowed in a JEOL JSM-840 at 70E tilt angle is 15mm, and since this is also the
only working distance at which the dynamic focusing (and tilt correction if
available) works without distortions, there is really no option here.

Final Lens Aperture - As the aperture of the final objective lens, and therefore
also the divergens of the electron beam, is increased, the spatial resolution
decreases. Hjelen (1990) suggests that this effect is caused by spherical
aberration, and proposes the use of the smallest possible aperture.
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(2.4.1)

Using the operating conditions proposed by Hjelen (1990) for an aluminium
sample, the spatial resolution in the tilt axis direction is reported to be -250nm
and perpendicular to the tilt axis -670nm. These data were obtained using a
standard W-filament. Harland, Akhter & Venables (1981) have reported a
resolution of 20×80nm from nickel at 30kV and 75E tilt angle in a SEM
equipped with a field emission gun. 

2.4 The formation of EBSPs
Electron backscattering patterns are intimately related to Kikuchi patterns

and the EBSP technique is therefore often referred to as backscatter Kikuchi
diffraction (BKD). An EBSP is formed when a stationary electron beam is
focused on a small area of a crystalline material. As the beam enters the sample
the electrons are subject to a diffuse inelastic scattering in all directions. The
atomic planes of the crystalline material are thus showered by electrons arriving
from all directions, and therefore also by electrons which fulfil the Bragg law

where θ is the Bragg angle, λ is the electron wavelength, n is an integer (the
order of reflection) and dhkl is the interplanar spacing for crystal planes with
Miller indices (hkl). Electrons which impinge on a particular set of parallel
crystal planes at the Bragg angle will be elastically scattered and form two cones
of diffracted electrons as illustrated in figure 2.4.1. Similar cones are observed
in Kossel diffraction of x-rays, and the cones are therefore sometimes referred
to as Kossel cones. As illustrated in figure 2.4.1, the two cones of reflected
electrons are symmetric about the reflecting crystal plane and separated by twice
the Bragg angle. Even though this pair of cones will be recorded on the
phosphor screen as hyperbolas, the Bragg angle is so small (-0.5E) and the
opening angle of the cones (90E!θ) so large that the hyperbolas are essentially
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Figure 2.4.1 The formation of backscattered Kikuchi lines.

seen as two straight parallel lines known as Kikuchi lines. Each pair of Kikuchi
lines are the result of diffraction from a particular plane in the crystal, and the
intersection of the plane with the screen is a line which is located very close to
the center between the two Kikuchi lines. The distance between a pair of
Kikuchi lines is a function of the Bragg angle which again is inversely
proportional to the interplanar spacing dhkl as seen from equation (2.4.1) since
sinθ.θ for small θ. A typical EBSP of good quality is shown in figure 2.4.2. It
consists of bright bands on a diffuse background of non-uniform intensity. The
background signal is produced by inelastically scattered electrons, and the non-
uniform intensity is partly inherent to the set-up and the camera system and
partly caused by the topography of the specimen surface. As seen from figure
2.4.2., the sharp Kikuchi lines that are observed in the TEM are not present in
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Figure 2.4.2 EBSP from pure Copper. The image has been temporally averaged
and a background has been subtracted (400x400 pixels).

EBSPs. Instead, the Kikuchi lines are indirectly observed as the two relatively
sharp boarders of the bright bands, i. e. as the two lines at which the intensity of
the bands drop off rapidly. The image formation process described above and
illustrated in figure 2.4.1 is obviously rather simplified and does not account for
the observation of bright bands in EBSPs. These so-called excess bands are also
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Figure 2.4.3 The formation of excess bands in EBSPs.

observed in the TEM though they are far less visible than in EBSPs. It is quite
complicated to describe the mechanisms leading to the formation of bands in
Kikuchi patterns, and interested readers are referred to the introduction given by
Joy, Newbury & Davidson (1982). The effect which forms the band structure is
known as the channeling effect, because it may be visualized through the
existence of channels around the atomic planes in which the electrons can travel
more easily (this way of visualizing the effect can, however, be somewhat
misleading, since it would predict a smaller intensity of backscattered electrons
within the Bragg angle; in fact the reverse is observed, i. e. a larger intensity
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(2.4.2)

within the Bragg angle). The result of the channeling effect is illustrated in
figure 2.4.3. For angles smaller than the Bragg angle θB the multiple scattering
events interfere to produce an enhanced signal of backscattered electrons. At the
Bragg angle the backscattered signal drops off very fast, and for angles larger
than θB the signal first reaches a minimum value and then flats out. The
idealized band profile illustrated in figure 2.4.3 agrees well with what is
observed in typical EBSPs and with the theory developed (Joy, Newbury &
Davidson, 1982).

The intensity of a particular band relative to the intensities of other bands
can be predicted from the so-called structure factor F. It may be shown (see e.
g. Eddington, 1975) that the intensity I of the band originating from lattice plane
(hkl) is approximately proportional to the square of the structure factor

where the summation is taken over all atoms in the unit cell, (xi,yi,zi) is the
relative position of atom i and fi(hkl) is the atomic form factor, which again
depends on the interplanar spacing dhkl. The equation above is extremely useful
in the process of assigning Miller indices (hkl) to the bands in EBSPs, because
it allows one to predict which bands are the most prominent in the patterns from
a given material.
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Chapter 3

Crystal Orientations from EBSPs

3.1 The Orientation Determination Problem
The orientation of a three dimensional object such as a crystal can be

rigidly described by the rotation between two standard (rectangular and right-
handed) Cartesian coordinate systems:  A system fixed to the object
and a system  fixed to the "world", the reference frame. The base
vectors and  of the two frames are orthonormal (orthogonal and of unit
length) and since we are only interested in the rotation between the frames (not
translation), they can be assumed to have a common origin O. In the studies of
crystal orientations, the axes  of the system fixed to the crystal, shortly denoted
U, are chosen parallel to appropriate crystallographic directions, e.g. in the case
of cubic symmetry parallel to the cube edges [100], [010] and [001]. For non-
cubic crystals, it is necessary (or at least extremely convenient) to refer and
transform all crystallographic directions to a cubic basis as described by Young
& Lytton (1972) or by Boisen & Gibbs (1985). The axes  of the reference
frame, shortly denoted W, are usually chosen parallel to appropriate directions
suggested by the external shape of the sample, e. g. in the case of a rolled sheet
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Figure 3.1.1 Coordinate systems and geometrical relationships in
the EBSP set-up. See the text for further explanation.

(3.1.1)

parallel to the rolling direction (RD), the transverse direction (TD) and the
normal direction (ND) respectively. The orientation of the crystal is then
described by the matrix, commonly denoted g, which rotates the reference or
sample system W into the object or crystal system U, so that the coordinates of
an arbitrary vector p measured in the two coordinate system are related through

Here [p]U and [p]W are the coordinates of vector p measured in U and W
respectively, and g is a 3×3 matrix whose columns contain the coordinates of the
axes of the sample frame measured in the crystal frame. The matrix g is
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(3.1.2)

(3.1.3)

orthogonal, gTg = ggT = I (gT  is the transpose of g, I is the 3×3 identity matrix)
and its determinant det(g) = 1. The collection of all 3×3 orthogonal matrices with
determinant 1, forms a group (because the product of two rotation matrices is a
rotation matrix, and because each rotation has an inverse) known as the special
orthogonal group SO(3). An excellent reference on the basic properties of
rotations is Altmann (1986).

In order to determine crystal orientations from EBSPs, a coordinate
system  fixed to the pattern must be introduced in addition to the
sample frame W and the crystal frame U. These coordinate systems and the
geometrical relations in an EBSP set-up is sketched in figure 3.1.1. The unit
vector n in figure 3.1.1 represents the normal to a crystal plane, whose trace can
observed in the EBSP as a diffracted band. In accordance with  equation (3.1.1),
the orientation matrix g links the coordinates of n measured in frame U with the
coordinates of n measured in W through the relation [n]U = g[n]W. Let the matrix
which describes the rotation from the crystal frame U into the pattern frame V
be denoted X, and let the matrix Y describe the rotation from pattern frame V
into the sample frame W. The coordinates of n measured in U, V and W are then
linked by the relations

From equation (3.1.2), [n]U = XT[n]V =  XTYT[n]W, so that the crystal orientation
matrix g can be found from

The rotation matrix Y which describes the rotation between the sample
frame and the pattern frame, may be regarded as a set-up constant, since it is
unaffected by the local lattice orientation and only depends on the geometrical
arrangement of the phosphor screen relative to the specimen. Obviously, the
rotation Y is constant for a given sample positioned in the microscope, and the
relative orientations between pairs of crystallites are therefore unaffected by it.
Precise knowledge of the rotation Y is, however, required in cases where
absolute crystallite orientations (the orientation relative to the sample system) are
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important. It is commonly assumed that Y is constant and does not vary when
different samples are being analyzed in the microscope. This assumption can
only be approximately true, since it requires that the samples are positioned with
their external axes (e.g. RD, TD and ND) pointing in exactly the same directions
relative to some fixed axes (typically the microscope stage directions). In
principle, the rotation Y between the sample system and the pattern system can
be determined from parameters describing the EBSP set-up (tilt angle, the angle
between the microscopy y direction and the screen normal, see figure 2.2.2).
However, these parameters are difficult to measure and their values are not very
reliable, and it is therefore better to determine Y by using a calibration crystal of
known orientation. By using a crystal of known orientation g (we have used a
¢001¦ cleaved silicon single crystal) carefully aligned in the microscope, Y can
be found from equation (3.3.1), Y = (Xg)T = gTXT, where the rotation matrix X
is found as described later in this section. The calibration crystal of known
orientation is then taken out of the microscope, the EBSP set-up disassembled,
the crystal remounted and inserted into the microscope again. With the
calibration crystal again carefully aligned with respect to the microscope
directions, Y is recalculated as described above. This procedure is repeated as
many times as time allows and the average rotation ¢Y¦ may then be calculated
as described in Krieger Lassen, Juul Jensen & Conradsen (1994). Such a
procedure provides important information about the precision of Y and thus on
the absolute precision of crystal orientations determined from EBSPs (see also
chapter 5).

The rotation matrix X which describes the rotation between the crystal
and the pattern frame is far more interesting than the Y matrix, since it describes
the orientation of the crystallites with respect to the pattern frame. The
coordinates of the crystal plane normal n (see figure 3.1.1) measured in the
crystal frame U are linked to coordinates of n measured in the pattern frame V
through [n]V = X[n]U. In order to determine X the coordinates of at least two
crystal plane normals ni, i = 1,...,N (N$2), must be measured in both the crystal
and the pattern frame. The coordinates of the crystal plane normals ni measured
in the crystal frame U are found from the indexing procedure described in section
(3.4). It is assumed here that the indexing problem has been solved, and Miller
indices (hikili) has been assigned to N bands observed in the EBSP. The
coordinates of crystal plane normal n in frame U are then found as
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(3.1.4)

(3.1.5)

This equation is only valid for cubic crystals, and the reader is referred to Young
& Lytton (1972) or Boisen & Gibbs (1985) for the general case. To understand
the calculation of the coordinates of n in frame V, figure 3.1.1 must be studied
in more detail. Note that the origin of the crystal frame OU has been made to
coincide with the source point PS, the point on the surface at which the EBSP is
emitted. The vector t in figure 3.1.1 represents the translation OVOU from the
pattern frame to the crystal frame. The significance of t may be clarified by the
following relation,

which shows that t describes the position of the pattern center PC (x0,y0,0) (the
foot of the perpendicular from the source point PS to the phosphor screen) and the
distance R from the source point to the pattern center. The coordinates of the
translation vector measured in the pattern system [t]V are thus simply the
parameters which are found by the process of EBSP calibration. The calibration
problem is the subject of section 3.3, and it will be assumed here that this
problem has been solved and that [t]V is known. In figure 3.1.1 the position of the
band corresponding to a particular crystal plane normal n is described by a point
P on the center line of the band and by a unit vector r pointing in the direction
of the line. Since n is perpendicular to both r (nTr = 0) and to PSP = OVP!t
(nT(OVP!t) = 0), the coordinates of n measured in the pattern system can be
found from
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(3.1.6)

(3.1.7)

(3.1.8)

Assume now that the positions of N bands in an EBSP have been found and that
the corresponding crystal plane normals in the pattern system [n]V have been
calculated from equation (3.1.6). Assume also that the bands have been indexed
and that the crystal plane normals in the crystal system [n]U have been calculated
from equation (3.1.4) or a more general expression. If for convenience the vector
[n]V is denoted v and [n]U is denoted u, N pairs of vectors (ui,vi) are now
available. The aim is now to determine the rotation matrix X0SO(3) which
simultaneously fulfils the N equations, vi = Xui, i=1,...,N, where N$2.
Unfortunately, no such X exists due to errors in vi, and X must therefore be
estimated from the data (ui,vi), by minimizing some appropriate measure of the
total error. This problem of fitting unit vectors to a rotation matrix, has been
named spherical regression by Chang (1986) because of the obvious similarity
to other regression problems, e. g. the familiar linear regression problem. An
introduction to this and related problems can be found in Krieger Lassen, Juul
Jensen & Conradsen (1994). An obvious choice for a measure of the total error
is the familiar sum of squared errors SSE(X) defined by

and the rotation matrix  which minimizes SSE(X) is naturally denoted the least
squares estimate of X. Note that 3*vi!Xui*

2 = 3(vi!Xui)T(vi!Xui) =
3(1+1!2vi

TXui) = 2N!23vi
TXu = 2N!23cosεi, where εi is the angular distance

or error between vi and Xui, so that the least squares estimate maximizes the sum
of cosines of the angular error εi. The estimate  of X can be found from the
singular value decomposition (see for example Golub & Van Loan, 1983) of the
following 3 x 3 cross-product matrix A,

The right-hand-side of equation (3.1.8) represents the singular value
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(3.1.9)

decomposition of A, arranged so that O1, O2 0 SO(3) and Λ = diag(λ1,λ2,λ3) (a
diagonal 3×3 matrix) with λ1 $ λ2 $ *λ3*. If at most one of the singular values λi
equals zero, the least squares estimate of X is uniquely given by

Routines for performing the singular value decomposition (SVD) can be found
in many standard mathematical routine libraries (e. g. in the LINPACK, IMSL
or NAG packages) and may also be found in the book by Press, Flannery,
Teukolsky & Vetterling (1988). Even though the spherical regression procedure
described above was first presented by MacKenzie (1957), it appears to be
unknown in the community dealing with crystal orientation determination from
EBSPs and other Kikuchi patterns.

A procedure for determination of the crystal orientation g from a particular
EBSP has been presented above. However, one practical problem concerning the
orientation of the crystals remains; the existence of symmetrically equivalent
orientations. Due to the symmetry of the crystal, there exists a number of
orientations ge which are physically indistinguishable and correspond to exactly
the same EBSP. For a cubic crystal, for example, the axis may assume 6
different directions, is then restricted to 4 different directions and is fixed
as . Thus there are 4@6=24 g matrices that represent exactly the same
physical orientation of a cubic crystal. Due to this ambiguity of the orientation
matrix, it is desirable to have a criteria for choosing a unique g matrix among the
24 equivalent ones. Such a criteria has been proposed by Schmidt & Olesen
(1989) and is based on the so-called elementary pattern of the sphere (EPS)
which again may be represented as an area on a stereographic projection. The
size and position of this "unit" area depends on the Laue group to which the
material belongs, and for a cubic crystal belonging to group m3m (e. g.
aluminium) the area is bordered by the poles [001] - [1 1&1] - [101] - [111] in the
stereographic projection. For the bordering poles corresponding to other Laue
groups see Schmidt & Olesen (1989). As the unique orientation matrix g among
all equivalent orientation matrices ge, the one which has the coordinate vector
[ ]U confined within the bordering poles is chosen. The coordinates of the
pattern frame z axis  measured in the crystal frame [ ]U can be found as the
third column of the rotation matrix XT or as the third row of X. Obviously, the
symmetry of the crystal is reflected in the rotation matrix X (and g), whereas
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symmetries of the sample are reflected in the rotation matrix Y (and g). In the
case of a rolled sheet the  axis may point in either the +RD or !RD direction,
the axes in either the +ND or !ND direction and  is then fixed as w3 x w1.
Hence, for a rolled sheet, 4 symmetrically equivalent rotation matrices Ye exist,
and the total number of equivalent orientation matrices ge for a rolled cubic
material is thus 4@24=96.

3.2 Calibration of an EBSP Set-up
The calibration of an EBSP set-up consists of determination of the pattern

center PC and the distance R from the source point PS to the screen (see figure
3.1.1). As explained in the preceding section, the calibration parameters may
conveniently be expressed as the coordinates of a vector t which represents the
position of the source point PS relative to the pattern frame V. Precise knowledge
of the calibration parameters, the coordinates of t, is essential if precise crystal
orientation measurements are required. Not only does the precision of these
parameters affect the precision of orientation measurements, but it also affects
the possibility of obtaining a correct indexing of the bands. Hence, if the
parameters are far from their correct values, the indexing procedure is likely to
fail, which of course will result in a completely wrong crystal orientation.

Many calibration procedures have been proposed in the literature, see
Randle (1992) for an overview. Venables & bin-Jaya (1977) developed two
methods in which the shadows cast by specially designed objects placed in front
of the phosphor screen were used to determine the calibration parameters. In one
method a circular mask was mounted in front of, and concentric to, the screen;
in the other three spherical balls were employed. An accuracy of ±0.1mm for the
position of the source point was reported; this corresponds to a relative precision
of 0.1/25= 0.4%, since the diameter of the phosphor screen was 25mm. The need
for these highly specialized attachments to the EBSP set-up was eliminated in the
calibration procedure which was later developed by Dingley & Baba-Kishi
(1986). This method, which is still commonly used, is based on the pattern
obtained from a special calibration specimen, a silicon single crystal with surface
normal parallel to [001] and the [110] crystal direction made to lie parallel to
microscope y direction. Depending upon the set-up of the phosphor screen with
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respect to the specimen surface, the pattern center may be found directly as the
position of a particular zone axis (the [001] zone axis if the phosphor screen is
parallel to the sample, the [114] zone axis if the sample is tilted 19.47E with
respect to the screen surface). The source point to screen distance is then
calculated from the distance between the pattern center and another zone axis and
the angle between the two corresponding crystal directions (for details see e. g.
Randle, 1992). Dingley & Baba-Kishi (1986) reported the accuracy of the source
point determination to be 0.5%, but it is not clear from their paper what this
relative precision is relative to. An alternative calibration method based on the
shadows cast by two pairs of crossing wires has been developed by Day (1994).
The two pairs of crossing wires are mounted at different positions in front of the
phosphor screen, so that the direction defined by the two crossing points is
exactly normal to the screen (an illustration can be found in Randle, 1992). The
pattern center can then be found as the intersection point of the shadow lines
when the crosswire shadows are superposed. The author has no detailed
knowledge of this calibration procedure and its performance, but it is reported
by Randle (1992) to be very precise. Finally, if the phosphor screen can be
moved accurately in the direction of the screen normal, patterns obtained at
different screen positions can be used for determination of the calibration
parameters (Hjelen, Ørsund, Hoel, Runde, Furu & Nes, 1993). When the screen
is retracted from its normal position the pattern center PC will remain stationary,
whereas all other points will move away from PC. By tracing the position of
several points in patterns obtained at different positions, the pattern center can
be located. The source point to screen distance can then be calculated from the
positions of two zone axes and their corresponding indices. According to Hjelen
(private communications), this method is not very precise and needs further
development. 

An obvious drawback of all the shadow casting calibration methods
presented above is, besides the need for specialized set-up attachments, of course
the shadows themselves. The shadows remove a fraction of the information in
the EBSP and will inevitably have a negative effect on the performance of any
image processing routine developed for automatic band localization.
Unfortunately, the classical method based on a silicon crystal of known
orientation can not be applied directly in our set-up, due to special geometrical
arrangement of the phosphor screen relative to the specimen (figure 2.2.2). These
problems were the motivation for the calibration procedure presented by Krieger
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(3.2.1)

(3.2.2)

Lassen & Bilde-Sørensen (1993). This calibration procedure will be described
in detail in the following, along with recent extensions and developments.

The calibration procedure proposed by Krieger Lassen & Bilde–Sørensen
(1993) uses the positions and indices of at least four zone axes to calculate the
position of the pattern center and source point to screen distance. The coordinates
of the pattern center PC with respect to the pattern frame V are [OVPC]V = (x0,y0,0)
and the distance from the source point PS to the pattern center is *PSPC* = R. The
vector describing the translation between the pattern frame V and the crystal
frame U (see figure 3.1.1) is t = OVPS, so that its coordinates measured in V are
[t]V = [OVPS]V = [OVPC]V+[PCPS]V = (x0,y0,0) + R@(0,0,!1) = (x0,y0,!R). The
calibration problem can then be described in mathematical terms, as the problem
of determining the coordinates of the source point PS with respect to the pattern
frame, or equivalently the coordinates of the translation vector t. Let the points
Pi, i=1,...,N, represent the positions of N zone axes in the pattern, and let the unit
vectors pointing from the source point to the zone axes PSPi be denoted
pi=PSPi/*PSPi*. It is now assumed that the indices of the zone axes [uiviwi] are
known, and hence the coordinates of pi measured in the crystal frame are given
by

For non-cubic crystals the crystallographic directions [uiviwi] must first be
transformed to a standard cubic basis before the normalization in equation (3.2.1)
is performed (see e. g. Young & Lytton, 1972). The same unit vectors pi
measured in the pattern frame V can be found from

and are related to [pi]U by the rotation matrix X, [pi]V = X[pi]U. With knowledge
of the calibration parameters [t]V and the positions [OVPi]V and indices [uiviwi]
of at least two zone axes, the coordinate vectors [pi]U and [pi]V can be found from
equations (3.2.1-2), and the rotation matrix X may then be calculated as
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(3.2.3)

(3.2.4)

described in section 3.1. 
The calibration problem may now be stated as the problem of determining

[t]V without any knowledge about the rotation matrix X, since X is obviously
dependent on [t]V. The idea presented in Krieger Lassen & Bilde-Sørensen
(1993) is to utilize the fact that the angles between pairs of zone axis vectors
(pi,pj) are the same in the crystal frame U and in the pattern frame V, i. e.

The left-hand-side of this equation is dependent on [t]V, whereas the right-hand-
side is known. Equation (3.2.3) thus represents an equation with three unknowns
[t]V = (x0,y0,!R). If the positions and indices of N zone axes are known, a total
of N@(N!1)/2 equations of the form (3.2.3) are available; one for each zone axes
pair (i,j). Due to inevitable errors in the position of the zone axes [OVPi]V and
therefore in [pi]V (equation 3.2.2) it will, however, not be possible to find
parameters [t]V, which will simultaneously satisfy all of these N@(N!1)/2
equations. Instead the calibration parameters will be found as the vector

which minimizes the following sum of squared errors,

where the summation is taken over all zone axes pair (i,j). The following
procedure for obtaining the calibration parameters can be described:

1. An EBSP of high quality is obtained from an arbitrary specimen.

2. A number of the zone axes are indexed in some way and the vectors [pi]U
calculated from equation (3.2.1).

3. The positions of the indexed zone axes [OVPi]V are found by an operator. 

4. The calibration parameters may then be found as the coordinates of the vector
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, which minimizes the sum given in equation (3.2.4).

Note that EBSPs from any specimen may be used in this calibration procedure,
as long as the quality of the pattern allows at least four zone axes to be
recognized and located with a reasonable precision. The pattern must then be
indexed in some way; e. g. with the aid of Kikuchi maps or by using the EBSP
indexing software if a reasonable guess for the true calibration parameters is
available (this is typically the case, unless the EBSP set-up has changed
drastically). The locations of the indexed zone axes are simply found by
superimposing a cursor onto the digitized EBSP and then let a trained operator
point them out. The minimization of the sum in equation (3.2.4) with respect to
[t]U can be performed by many different numerical procedures; such procedures
can be found in all standard mathematical routine libraries. We have found that
the minimization procedure known as Powell's method (see e. g. Press et al.,
1988) performs well with this specific problem and is both very precise and
relatively fast. 

It is of course vital for the success of this calibration procedure that there
is a unique global minimum to the minimization problem of equation (3.2.4).
Fortunately, this is in general the case when at least four zone axes are used. The
existence of a global minimum was tested by starting off the minimization
procedure at several different starting points and checking for convergence to the
same solution, within machine accuracy. With only three zone axes as input to
the procedure, it was observed that several minima existed, each providing a
perfect fit, SSE(t)=0 (within machine accuracy). This fact indicates that the three
equations (3.2.2) have several exact solutions when three zone axes are used,
N=3. With four zone axes as input, a unique solution was found unless three of
the zone axis were on a common line, which means that three of the vectors pi
lie in a common plane, i. e. are linearly dependent. The situation for N=5 is quite
similar, i. e. a unique solution exists unless four of the zone axes are collinear.
With six or more zone axes N$5, it is very unlikely that (N-1) of the zone axes
lie on a common line, and so, in practice, there will always be a unique solution
to the calibration problem. These conditions for obtaining a unique solution to
the calibration problem are based purely on observations of the behavior of
equation (3.2.3), and it would be desirable to have a better theoretical
understanding of the mathematical properties of this minimization problem. It
was recently found by the author of this thesis that a problem which is
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mathematical equivalent to the calibration problem, arises in machine vision and
automated cartography. In automated cartography the equivalent problem is
referred to as the location determination problem (Fischler & Bolles, 1981), and
in machine vision the problem is referred to as the camera calibration problem
(see e. g. Holt & Netravali, 1991). Fishler & Bolles (1981) showed that in
general there are four solutions to the calibration problem when three zone axes
are used, and they derived the corresponding solutions. They also showed that
a unique solution exists when four zone axes are used, provided that no more
than two of the zone axes lie on a single line. These results were verified by Holt
& Netravali (1991), who also presented a more formal mathematical formulation
of the problem. It should also be noted here that the calibration problem has a
close relationship to a special data analysis method know as procrustes analysis
often used in the psychological literature (see e. g. Goodall, 1991). It seems
likely that important information related to the calibration procedure presented
by Krieger Lassen & Bilde–Sørensen (1993), may be obtained by studying the
relevant literature on camera calibration, cartography, and procrustes analysis.

To test the performance of the calibration procedure described above, 10
high quality EBSPs from pure copper were obtained and indexed with the
indexing software. The patterns were from crystallites of orientations well spread
in the orientation space SO(3). For each pattern, the calibration procedure was
repeated 10 times using the same collection of zone axes. As many zone axes as
possible were used, as long as their positions were relatively well defined, and
the zone axes were generally chosen to be well spread over the pattern. From 9
to 13 zone axes were used for the different EBSPs. The observed spread in the
values of the calibration parameters [t]V = (x0,y0,!R) is relatively small (the
standard deviation is in the order of 1 pixel), when the same pattern is used
repeatedly with the same set of zone axes. The average of the calibration
parameters were then calculated for each of the 10 patterns and the result are
given below in table 3.2.1.
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EBSP X0 Y0 R

1 192.5 350.2 258.8

2 190.1 350.2 259.1

3 190.2 349.2 261.0

4 195.3 351.5 259.2

5 194.9 349.5 264.3

6 194.7 352.5 260.5

7 192.1 352.7 258.9

8 195.4 349.7 263.3

9 189.7 345.3 262.8

10 191.3 352.6 257.1

Mean 192.6 350.3 260.5

Standard Dev. 2.30 2.21 2.32

Precision (95%) ±1.6 ±1.6 ±1.7

Table 3.2.1 The calibration parameters determined on the basis of 10 EBSPs
from pure copper. For each pattern, the calibration parameters were determined
10 times by repeatedly localizing the same set of 9 to 13 zone axes. The table
lists the average values of the 10 measurements; see text for further details.

The last row lists the uncertainties of the average of the calibration parameters
(x0,y0,R) as 95% confidence intervals, assuming normality of the observation.
The estimated calibration parameters are measured in pixels, and since the
diameter of the phosphor screen is about 380 pixels, the relative precision may
be defined as 1.6/380 = 0.42%. This compares well with what has been reported
for other calibration procedures (Venables & bin-Jaya; 1977; Dingley & Baba-
Kishi; 1986). It is very complicated to described how the uncertainties in the
calibration parameter affect the uncertainty of the rotation matrix X (see section
5 for a discussion on precision). However, the angle between the vectors PSPC =
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(3.2.5)

(3.2.6)

(0,0,R) and PSPC
* = (∆x0,∆y0,R) may provide some measure of the angular

precision, ∆ω = acos(R/(∆x0
2+∆y0

2+R2)½) = acos(260.5/(1.62+1.62+260.52)½) =
0.50E. Obviously, the precision increases if more patterns are used in the
calibration process, and if the errors can be assumed to follow normal
distributions, the uncertainties will be -1.1 pixels when 20 EBSPs are used. The
relative precision would then be 1.1/380 = 0.29% and the angular precision ∆ω
= acos(260.5/(1.12+1.12+260.52)½) = 0.34E.

It is quite obvious that the calibration procedure presented above could
easily be modified to use crystallographic planes instead of zone axes. The
benefit from using planes instead of zone axes is that bands are easier to localize
by image processing routines, and that a fully automated calibration procedure
may therefore be obtained. Let the unit vectors ni, i=1,...,N, represent the normals
to N planes observed in the pattern as bands, and let the known indices of the
plane be (hikili), so that the coordinates of ni measured in the crystal frame are
given by

For non-cubic crystals the crystallographic planes (hikili) must be transformed to
a standard cubic basis (see e. g. Young & Lytton, 1972). The same unit vectors
ni measured in the pattern frame V can be found from

where ri and OVPi describe the direction and position of the band i (see figure
3.1.1). The coordinate vectors [ni]V and [ni]U are related by the rotation matrix
X by [ni]V = X[ni].

As described above, the calibration problem may now be stated as the
problem of determining [t]V without any knowledge about the rotation matrix X.
This problem may be solved by utilizing the fact that the angles between pairs
of crystal normal vectors (ni,nj) are the same in the crystal frame U and in the
pattern frame V, i. e. [ni]V

T[nj]V = [ni]U
T[ni]U. Since the left-hand-side of this
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(3.2.7)

expression is dependent on [t]V whereas the right-hand-side is known it
represents one equation with the three unknowns [t]V = (x0,y0,!R). Given the
positions and indices of N bands, N@(N!1)/2 equations of the form [ni]V

T[nj]V =
[ni]U

T[ni]U are available; one for each band pair (i,j). Due to inevitable errors in
the position of the bands, these equations cannot be solved simultaneously, and
the calibration parameters will therefore be found as the vector  which
minimizes the sum of squared errors,

where the summation is taken over all unique band pairs (i,j). A procedure for
obtaining the calibration parameters from indexed bands can now be described:

1. An EBSP of good quality is obtained from an arbitrary specimen.

2. A number of the bands are indexed in some way and the vectors [ni]U
calculated from equation (3.2.5).

3. The directions [ri]V and positions [OVPi]V of the indexed bands are found by
an operator or an image processing procedure. 

4. The calibration parameters may then be found as the coordinates of the vector
, which minimizes the sum given in equation (3.2.7).

The indexing of the bands can be performed by the EBSP indexing software,
when a rough guess for the true calibration parameters are available (this is
usually the case, unless the set-up geometry has been changed drastically), or
with the aid of maps. The minimization of the expression in equation (3.2.7) is
again performed by some appropriate numerical procedure, e. g. the Powell's
method used above in the zone axes case.

It was described above for the calibration procedure based on zone axes
that three zone axes were not enough to ensure a unique minimum and thus a
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unique set of calibration parameters. As expected, the same holds for the
calibration procedure based on bands, and therefore at least four bands are
required for uniqueness. With four bands used as input to the procedure, a unique
solution was in general found, unless three of the bands had a common
intersection point (a zone axis), which means that three of the vectors ni lie in a
common plane, i. e. are linearly dependent. In more general terms, it was
observed that with N$4  bands used as input, a unique solution was always
found, unless (N-1) of the bands intersected in a common point. This fully agrees
with the observations made in the zone axes case.

The performance of the calibration procedure based on the positions and
indices of bands was tested with the same 10 EBSPs used for testing the
procedure based on zone axes. As before, the calibration procedure was repeated
10 times for each pattern using the same collection of bands. As many bands as
possible were used, as long as their positions were relatively well defined; from
11 to 13 bands were used for the different EBSPs. The observed spread in the
values of the calibration parameters [t]V = (x0,y0,!R) was slightly larger (the
standard deviation was of the order of 1.3 pixel) than observed for zone axes,
when the same pattern was used repeatedly with the same set of bands. The
average of the calibration parameters was then calculated for each of the 10
patterns and the result is given below in table 3.2.2.
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EBSP X0 Y0 R

1 189.6 348.3 259.4

2 191.5 351.7 263.8

3 192.5 347.9 259.9

4 190.9 347.2 263.3

5 196.9 349.0 262.0

6 192.2 349.1 260.3

7 191.1 350.4 261.1

8 192.7 354.2 258.8

9 193.4 350.0 258.0

10 189.9 348.1 260.7

Mean 192.1 349.6 260.7

Standard Dev. 2.08 2.10 1.88

Precision (95%) ±1.5 ±1.5 ±1.3

Table 3.2.2 The calibration parameters determined on the basis of 10 EBSPs
from pure copper. For each pattern, the calibration parameters were determined
10 times by repeatedly localizing the same set of 11 to 13 bands. The table lists
the average values of the 10 measurements; see text for further details.

When compared with the results given in table 3.2.1 for calibration using zone
axes, it is observed that the difference in the estimated calibration parameters is
small and safely within the 95% confidence limits. The standard deviations and
therefore also the confidence limits (again based on a normal distribution
assumption) are almost the same for the two procedures, and it is therefore not
possible - with the data presented - to draw any conclusions regarding possible
differences in the precision of the two procedures.

Even though it would be desirable to perform a more thorough statistical
investigation of the precision of the calibration procedures introduced above, the
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data presented clearly indicate that high precision estimates of the calibration
parameters can be obtained. There are several important advantages of these two
equivalent approaches to calibration. First of all, no special standard specimens
or specialized attachments to the EBSP set-up are required. Secondly, the
procedure can be used on any EBSP system, regardless of the geometrical set-up,
contrary to the procedure based on a silicon crystal (Dingley & Baba-Kishi,
1986). Finally, with the aid of image processing procedures designed for band
localization, it is possible to obtain a fully automatic calibration procedure. It is
obviously very convenient to have such an automatic procedure, but its
usefulness may be discussed, since the EBSP system is usually only calibrated
when the geometry of the set-up has changed (which seldomly occurs). It must
be noted that the calibration parameters change when the source point moves
relative to phosphor screen, i. e. when the specimen is moved in the microscope
x direction (see figure 2.2.2). However, since the electron beam then moves out
of focus, it is necessary to correct for this by moving the specimen an appropriate
amount in the z direction, and thus the calibration parameter remains unchanged.
As a final note on this novel approach to the calibration of an EBSP set-up, it is
important to realize the influence of image distortions, introduced by the camera
lens installed in front of the SIT camera. The author believes that a relatively
large part of the variations seen in the estimated calibration parameters when
different patterns are used for calibration is due to such distortions. Eliminating
these distortions would improve not only the calibration accuracy but also the
overall accuracy of orientation measurements.

3.3 Automated Indexing of EBSP Bands 

Given the positions of N bands in an EBSP and the calibration parameters
[t]V, the object is now to determine which crystal planes the bands were
diffracted from. Crystal planes are traditionally described by Miller indices (hkl)
and the problem of assigning Miller indices to them is referred to as the indexing
problem. There is a simple correspondence between the Miller indices (hkl) of
a plane and the crystal plane normal [n]U as described by equation (3.2.5) (and
the comment below it), and the determination of the vectors [ni]U will therefore
also be referred to as indexing. To solve the indexing problem the following
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types of information can be used:

1. From the positions of the N bands and the calibration parameters the crystal
plane normals referred to the pattern frame [ni]V can be calculated from equation
(3.2.6). The angle between a pair of crystal plane normals is the same in the
pattern and the crystal frame, [ni]V

T[nj]V =  [ni]U
T[nj]U. This property is the

foundation of the indexing procedure.

2. From knowledge of the material under investigation and its atomic
arrangement, the intensities of bands from different crystal planes (hkl) can be
predicted by considering the square of the structure factor Fhkl (equation 2.4.2).
By only considering crystal planes which produce strong reflections and high
intensity bands, the indexing problem is greatly simplified.

3. The width of the observed bands is a function of the Bragg angle θB which
again is a function of the interplanar spacing dhkl (equation 2.4.1). It is therefore
possible to gain information about the indices of a band from the observed band
width. However, the band widths can only be very roughly determined from
EBSPs, and can therefore only serve as a guide in the indexing process. Our
indexing procedure does not use band width information.

The indexing procedure described in the following is - to a large extent - based
on a procedure developed and implemented by Niels Henrik Schmidt. The basic
ideas of the procedure were presented in Schmidt, Bilde-Sørensen & Juul Jensen
(1991). However, the original procedure has been greatly modified to
accommodate for the special requirements in a fully automated system.

Based on calculations of the structure factor Fhkl for a specific material
(equation 2.4.2), the Miller indices (hkl) of the crystal planes which generate the
brightest bands are found and saved to a file. For aluminium, for example, the
file contains all planes from the families {111}, {200}, {220} and {311}. The
{111} family is represented by the planes:  (111), (11 1&), (1 1&1) and ( 1&11), since
the four remaining planes are found by a change of sign. Equivalently, the {200}
family is represented by 3 planes, {220} by 6 planes and {311} by 12 planes. It
will be assumed that the crystal planes (hsksls) have been ordered by the index s,
and the correspondingly ordered crystal plane normals are denoted [ns

*]U. The
normals [ns

*]U to all of the crystal planes (hsksls) are now calculated from
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(3.3.1)

equation (3.2.5) (or for non-cubic crystals as described in e. g. Young & Lytton,
1972), and the angles between all possible pairs of normals then found from

All of these angles are sorted and stored in a look-up table. In the case of
aluminium, 25 bands are considered resulting in a total of 25@24/2 = 300 angles,
ranging from 25.24E to 90E. All of the angles appear several times in the look-up
table, indicating that several different pairs of crystal plane normals have the
same angular distance.

Assume now that N crystal plane normals [ni]V, i = 1,...,N, have been
calculated from the calibration parameters and the positions of N bands in an
EBSP (equation 3.2.6). It will also be assumed that there is a natural ordering of
the bands ([ni]V) as indicated by the index i. In the case where the bands have
been located by an operator, i = 1 simply refers to the band located first and i =
N to the band located last. In the case where an image processing procedure has
located the bands, the ordering will be such that i = 1 refers to the most reliable
band and i = N to the least reliable band. The indexing procedure now proceeds
in the following manner:

1. Calculate the angle between the two first crystal plane normals,
, and find the closest matching angle θ . α in the look-

up table. As described above, there will be a small collection of different plane
normal pairs {[nk

*]U,[nl
*]U} that all have the same angular distance, i. e.

acos(*[nk
*]U

T[nl
*]U*) = θ. For each of these pairs (k,l), perform the following

steps:

2. Given the crystal plane normal pair ([nk
*]U,[nl

*]U) it is now possible to propose
several indexing solutions; i. e. propose coordinates for [n1]U and [n2]U. In
principle the following eight solutions are possible: ([n1]U,[n2]U)=(±[nk

*]U,±[nl
*]U)

and ([n1]U,[n2]U)=(±[nl
*]U,±[nk

*]U). However, in general only four of these
solutions need to be considered: Once [n1]U has been chosen as either ±[nk

*]U or
±[nl

*]U, [n2]U must be chosen to ensure that the sign of [n1]U
T[n2]U equals that of

[n1]V
T[n2]V. Obviously, this sign rule cannot be applied when n1 and n2 are

perpendicular, n1
Tn2 = 0, and in that case all eight indexing solutions must be

tested. For each possible indexing of ([n1]U,[n2]U), perform the following steps:
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3. Given the two pairs of vectors ([n1]V,[n2]V) and ([n1]U,[n2]U), the matrix X
describing the rotation between the crystal frame U and the pattern frame V can
be calculated as described in section 3.1. Initially, it is checked whether the
rotation matrix X satisfies the uniqueness criteria described in section 3.1 (to
choose among the symmetrically equivalent orientations). If this criteria is not
satisfied, go back to step 2. The object is now to validate the proposed rotation
matrix X. If only the two bands corresponding to n1 and n2 are available, the
proposed solution must be validated by displaying a simulated pattern on top of
the observed EBSP. This simulated pattern is generated in the following way: All
the crystal plane normals from the look-up table are transformed to the pattern
frame [ns

*]V = X[ns
*]U; the traces of the  planes can then be found from [ns

*]V and
the calibration parameters [t]V, and are displayed in the pattern as lines. An
operator must then judge the proposed rotation matrix X by visually comparing
the simulated pattern with the real one. If more than two bands are available
[ni]V, i = 1,...,N (N>2), the (N-2) bands [ni]V, i = 3,...,N can be used to validate
X. This procedure, which is an addition to the original indexing procedure
developed by Niels Henrik Schmidt, works as follows: For each band [ni]V, find
that vector u among all the vectors us = ±[ns

*]U (± the vectors in the look-up
table) that minimize |[ni]V!Xus|, and store the minimum value in a table FIT(i).
The vector u represents the indexing of band i, [ni]U = u, and FIT(i) is a measure
of how well band i fits the proposed X. The sum of the fit values for each band
3FIT(i) is good measure for the agreement between the proposed rotation matrix
X and the localized bands. This sum is stored for each of the proposed solutions,
and the one which resulted in the smallest sum (i. e. the best fit) is accepted as
the real solution. If the indexing is done semi-automatically under supervision,
the operator must validate the proposed solution by comparing a simulated
pattern with the real one. If the patterns do not agree (this may occasionally
happen if less than four bands are used), the solution which gives the next best
fit is tried, and so on. In fully automated analyses, typically eight or more bands
are used, and the matrix X which gives the best fit will in practice always be the
right solution, unless the bands are very poorly localized by the image
processing. Note, that even if one or two of the automatically localized bands are
totally wrong, or right but not contained in the look-up table (this happens
occasionally), the right solution matrix X will still produce a significantly better
fit to the bands, than all the wrong solutions. Note also, that this procedure
allows one to disregard poorly localized bands, or bands whose indices are not
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found in the look-up table, since these can be distinguished by a large value for
FIT(i). This is put to use in the final calculation of X, which is based on all bands
but those that have FIT values larger than some appropriate threshold value.

The major steps of this indexing procedure are illustrated in figure 3.3.1.
It was described under point 1. above, that the angle between the two first crystal
plane normals , was used to find the closest matching
angle θ . α in the look-up table. In practice, it may be necessary to use the look-
up table not only at the closest matching angle θ, but at some appropriate interval
±∆θ around θ. By increasing ∆θ, the chance of finding the right indexing solution
also increases, but the drawback is, of course, that more suggestions for X must
be considered, and the total processing time therefore also increases. If the bands
are well localized and the calibration parameters are known to a high precision,
the interval ∆θ can be made very small.

When the indexing is performed on automatically detected bands, it is vital
for the success of the procedure described above that the first two bands (n1 and
n2) are rather precisely localized. Otherwise, the procedure will fail since all of
the proposed rotation matrices X are based on [n1]V and [n2]V. In very rare cases
it may happen that one or even both of the two first bands, is/are very poorly
localized, whereas the rest of the bands are relatively precisely localized.
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Fig. 3.3.1  Schematic illustration of the EBSP indexing procedure.

This rare situation may be detected automatically: If some appropriate measure
of the pattern quality indicates a good pattern, but the indexing procedure finds
only a very poor fit between bands and rotation matrix X. When this situation
occurs, the crystal plane normal pair (n1,n2) should be replaced by (n1,n3) or
(n2,n3), and the indexing procedure repeated.

Obviously, one could think of many modifications and alternatives to the
indexing procedure presented above. However, the basic idea of using the first
two bands for proposing a number of solutions, and then use the rest of the bands
to evaluate these solutions, leads to an efficient and very robust (not sensitive to
noisy and erroneous band localization) indexing procedure. Robustness to noise
or errors in the position of the bands is essential in a fully automated EBSP
analysis system, where erroneous bands can occur. 
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Figure 3.3.2 The indices of 11 manually localized bands in an EBSP from pure
copper. The white lines represent the center lines of the bands as they have been
localized by the operator, and their corresponding indices are shown in
parentheses. The black lines represent the simulated pattern. See the text for
further details.

As an extension to the procedure, band width information can be employed
as an aid in the indexing process as described by Wright & Adams (1992). They
classify the bands as either thin or thick, so that - for fcc symmetry - crystal
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planes from the families {111} and {200} are classified as thin and planes from
families {220} and {113} are classified as thick. It may also be possible to utilize
the relative band intensities to a larger extent than in the current indexing routine,
where the predicted intensities are used merely to limit the number of crystal
plane indices to be considered. By using the information obtained from band
widths and/or intensities, indexing becomes easier and fewer possible solutions
are to be considered which would speed up the indexing process.

The result of indexing 11 manually localized bands in an EBSP of high
quality from pure copper is illustrated in figure 3.3.2. The white lines represent
the bands which were localized by the operator, and the black lines represent a
simulated pattern based on the crystal plane normals in the look-up table. The
two thick white lines represent the bands which were localized first and hence
used for determining all the proposed solutions. Note that the indices of the
bands, displayed in figure 3.3.2 in parentheses, have been reduced by the largest
common divisor; (100) and (110) in figure 3.3.2 thus actually represent
reflections from the planes (200) and (220), respectively. The computational
costs of the indexing procedure presented here are fairly small, and the typical
processing time on a 80486/33MHZ PC is about 2 seconds.



                                                                                            

Chapter 4 

Automated EBSP Analysis

4.1 Introduction
When on-line analysis of electron backscattering patterns was introduced

by Dingley et al. (1987), one of the reviewers of that paper, M. Brunner, asked
the authors if they believed that a fully automated system could be developed.
Their wise though cautious answer to this question was "..., it is not inconceivable
that eventually such a system may be developed". Since then, several research
groups have worked on furthering the EBSP technique, with the ultimate aim of
developing such a fully automated system. The primary obstacle to this
development has been the problem of designing reliable image processing
routines to detect and localize either the zone axes or the band of EBSPs. 

In an early attempt to obtain a fully automated system, the EBSP was
compared with a large number of idealized template patterns, and the template
which gave the best fit was then chosen to represent the unknown orientation
(Wright, Zhao & Adams, 1991). While some promising preliminary results were
obtained with this technique, it was never developed further. With the
development of an indexing procedure based on the position of bands (Schmidt,
Bilde-Sørensen & Juul Jensen, 1991), the main problem now became the
development of a reliable technique for detecting and localizing the center lines
of EBSP bands. The first report on such a procedure was given in Juul Jensen &
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Schmidt (1990). In this procedure the image was first scanned to detect local
maxima. The image was then divided into a number of boxes, and a line was
fitted to the maxima in each box. Finally, the local lines were combined into
global lines representing the center lines of the bands. With this procedure,
typically only two to three bands could be detected, and the correct indexing
solution, therefore, had to be obtained by checking simulated patterns against the
intensities in the image.

In a fully automated system for EBSP analysis presented by Wright &
Adams (1992), a line detection scheme known as the Burns algorithm (Burns,
Hanson & Riseman, 1986) was employed. In this algorithm local gradient
information is first obtained by convolving the image with two differential
gradient edge detectors; Wright & Adams (1992) used the very popular Sobel
operators (see e. g. Niblack, 1985). The local gradient magnitude and orientation
is found from the convolution results, and the basic idea of the Burns algorithm
is then to group pixels with similar gradient orientation into so-called line-support
regions. Gradient orientation space is coarsely quantized into a small set of
intervals, and all pixels are then labelled according to the interval into which the
local gradient orientation falls (in practice two overlapping partitions of
orientation space are needed to avoid problems introduced by the interval
boundaries). A simple connected-components algorithm is then used to form
distinct regions of adjacent pixels with the same orientation label, and a line is fit
to each region; this can be done by a simple least-squares fit (Wright & Adams,
1992), weighted least-squares using the gradient magnitude as weight or by more
sophisticated techniques (Burns et al., 1986). The result of applying the Burns
algorithm to an image is thus a number of straight line segments of varying
lengths, located more or less precisely at the straight edges of the image, see
figure 4.1.3. When applied to EBSP images, the Burns algorithm has the
important advantage of relying primarily on gradient orientation and only to a
lesser extent on gradient magnitude. This means that even unsharp band edges
with low gradient magnitudes have a good change of being detected, as long as
the gradient orientations are not varying too much along
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Figure 4.1.1 Typical high quality EBSP
from copper.

Figure 4.1.2 The gradient magnitude of the 
  image in figure 4.1.1, based on the 3x3 
  Sobel operators. 
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Figure 4.1.3 Straight edge segments
detected by the Burns algorithm.

the band edge. Figure 4.1.1 and 4.1.2 show a typical high quality EBSP and the
corresponding gradient magnitude calculated on the basis of the Sobel operators.
Figure 4.1.2 illustrates that the gradient magnitude (the sharpness of the band
edges) is very weak for all but the 3 or 4 brightest bands. An important
disadvantage of the Burns algorithm, in connection with its application to EBSPs,
is that it is incapable of utilizing the fact that all band edges must extend across
the entire image; the detected line segments must in some way be combined into
global lines. Another special feature of EBSPs is the existence of parallel straight
edges at both sides of the bands. This fact cannot directly be utilized in the Burns
algorithm and similar procedures based on local edge detection, and special post
processing procedures must, therefore, be developed to extract parallel pairs of
straight edges. Such procedures are described by Wright & Adams (1992), and
are shown to be capable of providing the positions of a number of bands with a
precision that ensures reliable automated orientation calculations. The typical
number of bands that can be localized with this procedure has not been reported.

A completely different approach to automated band localization was
presented by Krieger Lassen, Juul Jensen & Conradsen (1992). Instead of
focusing on the location of bands edges, this procedure utilizes the increased
intensity between the edges to directly locate the center line of the bands. By
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using the Hough transform (Hough, 1962) of the gray-scale EBSP image,
evidence for the presence of  bands is effectively and conveniently recorded in the
parameter space of the transformation. In this parameter space which represents
to some precision the locations of all possible lines in the EBSP, the bands can be
observed as peaks of a size that reflects the width of the corresponding bands.
When the parameter space is filtered with a carefully designed "butterfly" mask,
the peaks are enhanced and their centers or "focal points" become better localized.
The center lines of the EBSP bands may then simply be found as the most
prominent local maxima of the filtered parameter space, as described in Krieger
Lassen et al. (1992). Contrary to the Burns algorithm, this procedure effectively
utilizes that EBSP bands extend across the entire image, and the center lines of
the bands are found in a simple and straightforward manner. The number of
bands that can be reliably localized with this procedure varies with pattern quality
from about 8 for low quality patterns to about 13 for high quality patterns (in
some cases up to 16 reliable bands can be localized, but then - in addition to these
- typically one or two non-existent bands are detected). The procedure described
in Krieger Lassen et al. (1992), Krieger Lassen (1992), Krieger Lassen & Juul
Jensen (1993), and Juul Jensen (1993) will be described in much greater detail in
the following sections, along with more recent modifications, developments, and
suggestions for further improvements.

Recently, the procedure originally described by Krieger Lassen et al.
(1992) was adopted and slightly modified as described by Kunze, Wright, Adams
& Dingley (1993). This paper also presents a comparison between the Burns
algorithm and the Hough transform method, with respect to their ability to
correctly localize the bands of EBSPs. The two methods were reported to be
almost equally reliable. Their implementation of the Hough transform procedure
was, however, reported to be faster than the Burns algorithm and more robust in
the case of  lower quality patterns. An evaluation and comparison of the precision
of the two methods has not yet been performed (see chapter 5 for a thorough
discussion on precision).

4.2 Preprocessing of EBSP Images
Prior to any attempt to extract the bands of the digitized EBSP, the image
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Figure 4.2.1 Raw EBSP image, digitized to 480×512 pixels.

must go through some initial preprocessing steps. Figure 4.2.1 shows a raw,
unprocessed pattern (apart from temporal averaging), digitized to 480×512 pixels.
As seen from figure 4.2.1, a substantial part of the image is not covered by pattern
information from the phosphor screen, and 56 columns of pixels are therefore
removed from both sides of the image. This results in an image with 480 rows and
512!2@56 = 400 columns. It can also be seen from figure 4.2.1 that the
information of the raw image is partly hidden by a slow variation in the
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Figure 4.2.2 Histogram of pixel values after subtraction of
background image and scaling.

background gray level. This background variation can - to a large extent - be
eliminated by subtracting a background pattern, obtained as the average of the
patterns from several individual crystallites. In practice, this average pattern is
obtained by operating the SEM in scanning mode, at a magnification which
ensures that a sufficiently large number of crystallites is covered by the electron
beam. After subtraction of the background image the pixel values are scaled to lie
within the range of one byte (8 bits), i. e. from 0 to 255. The histogram of the
pixel values after subtraction and scaling is shown in figure 4.2.2; the peak at
pixel value 114 is caused by the pixels outside the phosphor screen. Figure 4.2.2
shows that only a very small fraction of the pixels have values smaller than -50
and larger than -200. The contrast of the image can therefore be increased by
performing a linear stretch of the pixel values: I'  = 255@(I ! Imin)/(Imax ! Imin),
where I' is the stretched pixel value, I is the old value and Imin and Imax could be
chosen as 50 and 200 respectively. In practice, Imin and Imax are chosen as the
values which map a certain percentage of the pixels to 0 and 255 respectively. A
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Figure 4.2.3 Histogram of pixel values after subtraction
of background image, scaling and linear stretching.

linear stretch with 0.05% of the pixels (96 pixels) mapped to value 0 and 0.05%
mapped to value 255 (Imin = 40 and Imax = 221) leads to the histogram seen in
figure 4.2.3. The image obtained by extracting 480×400 pixels from the center of
the original EBSP (figure 4.2.1), subtracting a background image and stretching
the pixel values as described above, must now be corrected to give an aspect ratio
of 1. A pixel represents a rectangular physical area ~ of size  ∆x@∆y, where ∆x
and ∆y are referred to as the spatial resolution of the digitized image. The ratio
∆y/∆x is commonly denoted the aspect ratio of the pixels, and if this ration is not
1, the digitizing process introduces a simple distortion of the image. In figure
4.2.1 these distortions are observed as the elliptic appearance of the circular
phosphor screen. In our digitizing system the aspect ratio is 1.2, and hence the
distortions may be removed by resampling the 480×400 pixel image to a 400×400
pixel image (480/400 = 1.2); this may be accomplished in an efficient way by
simply removing each 6'th row of pixels. The result of the preprocessing stages
described above is shown in figure 4.2.4.
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Figure 4.2.4 EBSP image after subtraction of background, linear stretching
of pixel values and correction for non-square pixels (400x400 pixels).

As the next step of the preprocessing procedure, the resolution of the image
is reduced by a factor of four, from 400×400 pixels to 100×100 pixels. This is
done simply by partitioning the original image into nonoverlapping
neighborhoods  of  4×4 pixels,  and then replace  each of  these  neighborhoods
by a  pixel, whose value is the average of the pixel values  in that neighborhood;



56 4. Automated EBSP Analysis

Figure 4.2.5 EBSP image of figure 4.2.4 reduced by consolidation to 100x100
pixels.

an operation known as consolidation. If the original image is represented by
O(r,c), r0[0;399], c0[0;399], and the reduced image is R(r,c), r0[0;99], c0[0;99],
this operation may be written as
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(4.2.1)

Figure 4.2.6 EBSP image after
preprocessing (100x100 pixels).

The image of reduced spatial resolution is given in figure 4.2.5.
There are several important reasons why reducing the resolution of a

digitized EBSP is beneficial. First of all, it greatly reduces the computational
costs of the subsequent calculations. Secondly, it is obvious from figure 4.2.5 that
the averaging step of the consolidation process removes much of the noise
observed at high resolution, figure 4.2.4. It should finally be remarked, that the
scale of the image features that we seek to be extract, the bands, is such that no
significant information is lost as the resolution is reduced.
        It is evident from figure 4.2.5, that the image still contains some variations
in the background intensity level, and such variations will inevitably have a
negative effect on the subsequent processing. These variations can to a large
extent be eliminated by subtraction of a low-pass filtered variant of the original.
While the low-pass filtering could be performed in the frequency domain (using
a discrete two dimensional Fourier transform), it is faster and more convenient
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(4.2.2)

to create the low-pass filtered image by simple averaging of pixel values. Hence,
the low-pass filtered image L(r,c) is obtained from the original image I(r,c) by
averaging over neighborhoods of size N×N,

It was found that N = 11 was suitable for removing the background variations in
the reduced EBSPs (100×100 pixels), however, the value of N is not critical and
values in the range from 9 to 15 may be applied with success. As the final step
in the preprocessing of digitized EBSPs, the circular region of the image which
contains the pattern information is cut out, by setting the value of all pixels
outside this region to zero. These pixels carries no relevant information, and
should therefore be disregarded in subsequent processing. An additional
advantage of using a circular image arise in the context of the Hough transform,
as described in the following sections. Figure 4.2.6 shows the end result of the
preprocessing procedures described above.

4.3 The Hough Transform 
for Band Localization

4.3.1 Introduction and Background:
The Hough and Radon Transforms

The Hough transform (HT) has been recognized as a powerful tool in
shape analysis since it was first introduced by Paul Hough in a patent filed in
1962 (Hough, 1962). It was developed in connection with the study of particle
tracks through the viewing field of a bubble chamber, and the method actually
represents one of the first attempts to automate a visual inspection task. Hough
used the traditional slope-intercept parameterization of lines, y = mx + c, which
suffers from an unbounded parameter space (m,c) and a singularity for vertical
lines, i. e. for m 6 4. This difficulty lead Duda & Hart (1972) to suggest the use
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(4.3.1.1)

of the so-called normal parameterization, which describes the position of a line
by its distance ρ from the origin and the orientation θ of its normal vector; this is
illustrated in figure 4.3.1.1. It is common practice to restrict θ to the interval [0;π[
so that ρ can assume both positive and negative values in the interval [-R;R],
where R is the distance from the origin to the corners of the image. If the foot of
the perpendicular from the origin to the line (the normal point) is in the upper half
of the image then ρ > 0, otherwise ρ # 0. Even though many different
parameterizations of lines has been suggested during the years (see e. g. Risse,
1989), the normal parameterization remains by far the most widely used for line
detection via the HT.

In an important paper by Deans (1981), it was pointed out that the Hough
transform is actually a special case of the Radon transform (Radon, 1917); a
transform which went almost unnoticed for half a century but now is being
widely exploited, especially in the field of computerized tomography (Deans,
1983). The Radon transform of a function f(x,y) defined on a two-dimensional
Euclidean plane is defined as

Figure 4.3.1.1 Illustration of the normal
parameterization of lines.

where δ is Dirac's delta function. The delta function forces integration along the
line ρ = xcosθ + ysinθ (Obviously, Radon did not use Dirac's delta function in his
definition of the transform; the delta function was introduced in 1945). The
Radon transform yields thus the projections (line integrals) of the function f(x,y)
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(4.3.2.1)

along all possible lines defined by (ρ,θ). It may be shown that the Radon
transform can be computed via the Fourier transform (Deans, 1983). If the
continuous function f(x,y) is replaced by a discrete digital image I(x,y) and the
continuous parameter space (ρ,θ) is quantized as a digital image, it may be
recognized, that the Hough transform is essentially a discrete version of the
Radon transform. The Radon transform for shapes other than straight lines can
be obtained by replacing the argument of the δ function by a function which
describes that particular shape.

From the late 70's till today numerous researchers have contributed to the
development of the HT and other Hough-like techniques, and comprehensive
overviews of this work has been given by Illingworth & Kittler (1988) and more
recently by Leavers (1993). See also the first book completely devoted to the
subject by Leavers (1992). The HT was originally designed for straight line
detection, but has also been successfully applied to the detection of other
parameterized objects such as circles, parabolas and ellipses. In a classic paper
by Ballard (1981), a Hough-like technique known as the generalized Hough
transform (GHT) was developed, which is able to detect arbitrary shapes (shapes
which can not be described analytically). See also the book by Ballard & Brown
(1982). Probably the most desirable features of the HT is its robustness to noise
and occlusion, whereas its principal disadvantages are excessive storage
requirements and computational complexity. Much of the work concerning the
HT has been devoted to different solutions to these problems.

4.3.2 The Hough Transform for Line Localization

The Hough transform provides an efficient and robust technique for
deriving the values of parameters of a model, given a set of points that includes
instances of the model. In the present case, the points are the pixels of the
digitized EBSP image, and the model is a straight line parameterized by (ρ,θ) in
the normal form (Duda & Hart, 1972):

The position of the pixels (xi,yi) are measured in a Cartesian coordinate system
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positioned with the origin at the center of the image. Consider a digitized image
I(r,c) consisting of N×N pixels with the row and column indices (r,c) ranging
from [0;N-1]. The center of the image can then be defined as (r0,c0) = ([(N-
1)/2],[(N-1)/2]), where [z] indicates the largest integer strictly smaller than z. A
pixel with row and column indices (r,c) will now be given the index i = r@N+c and
the coordinates (xi,yi) = (c-c0,r0-r).

The essential idea of the Hough transform is illustrated in figure 4.3.2.1
and figure 4.3.2.2. A point (xi,yi) in Cartesian coordinates is mapped to all points
in the ρ-θ parameter space that specify a possible line through the point. From
equation (4.3.2.1) it is evident that this set of lines is represented by a sinusoid ρ
= xicosθ + yisinθ in parameter space. As illustrated in figure 4.3.2.2, collinear
points will map to sinusoids that intersect in a common point and the (ρ,θ) of that
point gives the parameters of the line.

For the purpose of calculating the Hough transform, the continuous but
bounded parameter space must be quantized into an array H(ρk,θl) of size M×M.
Hence the values of θ are sampled θl = l@∆θ, where ∆θ = π/M, and the values of
ρ quantized ρk = ρ0 + k@∆ρ, where ∆ρ = %2@N/M. It was chosen here to use a
square array M×M for sampling the parameter space, as this seems appropriate
for EBSP images (this is discussed in a later section). The array H(ρk,θl), which
may be regarded as a digital image in its own right, is now used as an
accumulator during the Hough transformation process:

For each pixel (xi,yi), i = 0,...,N2!1:
If I(xi,yi) > 0 do:

For each θl, l = 0,...,M!1:
Calculate  ρk

' = xicosθl + yisinθl
Add I(xi,yi) to H(ρk,θl)

Obviously, the value of ρk
' = xicosθl + yisinθl must be rounded to the closest value

ρk in the accumulator H(ρk,θl).
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Figure 4.3.2.1 Three collinear  points (xi,yi) in image space.
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Figure 4.3.2.2 Three sinusoidal curves in Hough space
corresponding to the three collinear points in figure 4.3.2.1.
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In all traditional applications of the Hough transform, the input image is
binary, i. e. I(x,y) = 0 or 1. This binary image is usually obtained by thresholding
the output of a mask-based, edge detection operator such as the Sobel (see e. g.
figure 4.1.2), so that pixels with value 1 correspond to potential edge points. The
fundamental idea behind the procedure described in Krieger Lassen et al. (1992),
is that the gray-scale pixel values I(x,y) (ranging from 0 to 255) are accumulated
in the quantized Hough space, so that I(x,y) serve as a measure of evidence for
a lines passing through the pixel (x,y). In terms of the traditional HT of binary
images, the pixel values I(x,y) serve as weigthing factors in the approach
suggested by Krieger Lassen et al. (1992). Other authors have suggested the use
of weighting factors to the contribution from each pixel (Ballard, 1981; Van Veen
& Groen, 1981; Ibrahim, Ngau & Daemi, 1992), but in all of these procedures the
factors are based on the magnitude of the edge gradients. Note that using the pixel
values in the calculation of the HT requires more processing than the traditional
HT, because more pixels are likely to have values larger than 0, and therefore
must be considered in the accumulation process.

The HT is often viewed as an evidence gathering procedure. Each pixel
votes for all parameter combinations that could have produced it, if it were part
of a line. The votes are summed in the accumulator array, and the final totals
indicate the relative likelihoods of the different lines. The HT may also be viewed
from a slightly different perspective, which clarifies its connection to the Radon
transform, equation (4.3.1.1). Each cell of the accumulator array H(ρk,θl) defines
a line ρk = xcosθl + ysinθl in the image plane, and the votes accumulated in
H(ρk,θl) will all originate from pixels along this line. Hence H(ρk,θl) is simply the
sum of pixel values I(x,y) along the line ρk = xcosθl + ysinθl; a discrete line
integral or projection of I(x,y). In fact, one may use this "definition" to calculate
the HT, though it is generally less efficient than the procedure given above,
because the fact that many pixel values typically are zero cannot be utilized.

The procedure for calculating the Hough transform outlined above is not
very computationally effective. For each pixel (xi,yi), i  = 0,...,N2!1 with I(xi,yi)
> 0, and for each sampled orientation θl, l = 0,...,M-1, the expression ρk

' = xicosθl
+ yisinθl must be evaluated and the corresponding accumulator array cell H(ρk,θl)
updated. The most computationally expensive operation is by far the evaluation
of ρk

' = xicosθl + yisinθl, which must be performed M@N2 times in the worst case
where I(xi,yi) > 0 for all pixels. For a typical EBSP with N = 100 and a parameter
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space resolution of M = 120, this basic HT algorithm requires 33.0 seconds of
processing time on a  80486/33MHZ PC. A great improvement in speed can be
obtained by pre-calculating the values of cosθl and sinθl and storing these in two
floating point arrays. The total processing time of the HT is then reduced from
33.0 to 6.6 seconds. A further increase in speed can be obtained by pre-
calculating the values of xicosθl and yisinθl and storing these in two 2D floating
point arrays of size N@M. By doing so the evaluation ρk

' = xicosθl + yisinθl is
accomplished by two 2D array look-ups and one floating point addition, and the
total computation time is reduced to 4.0 seconds. The speed may be increased
even further by first calculating all ρk

' = xicosθl + yisinθl values and then store the
corresponding array indices (ρk,θl) in one 3D integer array of size N@N@M. This
array simply contains the positions of all N@N sinusoids (one for each pixel), as
they appear in the accumulator array H(ρk,θl). With this procedure the HT can be
calculated in only 2.0 seconds. An obvious drawback of this procedure is the
excessive storage requirements;  in the case above with N = 100 and M = 120,
2@1002@120/10242 = 2.29MB of free memory is required. In cases where a large
number of pixels are known in advance to have the value 0, such as for EBSPs
(see figure 4.2.6), the size of the pre-calculated 3D array may be reduced
accordingly. For other efficient software implementations of the HT see e. g.
Leavers & Sandler (1988) and Koshimizu & Numada (1991).

4.3.3 Removing Inherent Biasing
 From the Hough Transform

The finite extension of digital images introduces a special artifact into the
Hough transform, which is commonly referred to as biasing. This effect of finite
image size or retina has been considered by several authors, notably Cohen &
Toussaint (1977), Van Veen & Groen (1981) and Maitre (1986),
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Figure 4.3.3.1 Square image of
uniform intensity (100×100 pixels).

Figure 4.3.3.2 The HT of the image in
figure 4.3.3.1 (120×120 pixels).
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Figure 4.3.3.4 The HT of the image in
figure 4.3.3.3 (120×120 pixels).

Figure 4.3.3.3 Circular image of
uniform intensity (100×100 pixels).
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Figure 4.3.3.5 Illustration of the arrangement of the 
HT accumulator array. Note the direction of the ρ axis.

and is clearly observed in the HT of an image of uniform intensity, see figures
4.3.3.1-4. The arrangement of the Hough arrays H(ρk,θl) displayed above, and in
the subsequent sections is illustrated in figure 4.3.3.5. Figure 4.3.3.2 and 4.3.3.4
shows that a uniform image with a finite retina results in a non-uniform Hough
transform with artificial maxima. In the HT of a square image (figure 4.3.3.2) the
maxima are located at (ρ,θ) = (0,45E) and (ρ,θ) = (0,135E), and thus corresponds
to the diagonals of the image. In the HT of the circular image (figure 4.3.3.4) the
maxima are located along the line ρ = 0, corresponding to all lines passing
through the center of the image.

The biasing effect is easily understood by considering the number of
pixels that contribute votes to a particular cell of the accumulator array H(ρk,θl).
Recall that the total sum of votes 3I(x,y) given to a particular cell (ρk,θl) origins
from pixels along the line ρk = xcosθl + ysinθl. Because of the finite size of the
image, the number of pixels lying along a given line (ρk,θl) will depend on its
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position and thus on its parameters (ρk,θl). In the case of a square image the
number of pixels lying along a line (ρk,θl) will depend on both ρk and θl, as seen
from figure 4.3.3.2. An advantage of using a circular retina is that the number of
pixels located along a particular line (ρk,θl) will depend solely on ρk (figure
4.3.3.4) and that the Hough space is bordered by straight lines ρ = ±R, where R
is the radius of the circular retina.

In practice, the biasing effect means that lines located near the center of
the image will have a greater change of being detected than lines located near the
edges. To give all lines an equal opportunity of being detected the biasing effect
can be eliminated in a fairly easy way: Construct first an artificial image in which
all pixels within the retina has the value one. The HT of this image, denoted
HTB(ρk,θl), will then in each cell (ρk,θl) contain the number of pixels which
contributed to that cell. By then dividing the total count in each cell of the HT by
the corresponding count in HTB, HT(ρk,θl)/HTB(ρk,θl), the HT is normalized and
the biasing removed. In the original HT, the cells (ρk,θl) contains the sum of pixel
values  3I(x,y) along a given line, whereas the cells of the normalized HT
contains the average of pixel values n!13I(x,y) along a given line. Note that the
two dimensional array for bias correction HTB need only to be determined once
for a given retina. The results of bias correction for a synthetic image and a
circular EBSP are given below in figure 4.3.3.6-11.
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Figure 4.3.3.6 Synthetic image
containing 7 bands of  5 pixels
width (100×100 pixels).

Figure 4.3.3.7 The HT of the
image in figure 4.3.3.6 without bias
correction (120×120 pixels).

Figure 4.3.3.8 The HT of the
image in figure 4.3.3.6 with bias
correction (120×120 pixels).
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Figure 4.3.3.11 The HT of the
image in figure 4.3.3.9 with bias
correction (120×120 pixels).

Figure 4.3.3.10 The HT of the
image in figure 4.3.3.9 without bias
correction (120×120 pixels).

Figure 4.3.3.9 Circular EBSP
image from pure copper (100×100
pixels).
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4.3.4 Peak Detection and Localization
 in the Hough Transform

Once the Hough Transform has been created the pattern of counts in the
accumulator array must be analyzed to estimate the presence and location of local
peaks or maxima. This problem of detecting clusters in the quantized parameter
space is normally solved using a simple approach like the following: Locate the
highest peak in parameter space, then the next highest peak, and so on until a
sufficient number of objects have been located. The problem of detecting local
maxima in Hough space has for obvious reasons attracted a lot of interest in the
literature, see e. g. Leavers & Boyce (1987), Davies (1992), Risse (1989),
Princen, Illingworth & Kittler (1990) and Niblack & Petkovic (1990). The main
focus of this research has been on reducing the effect of noisy data and on
obtaining high precision parameter estimates. However, all of this work has been
concerned with the detection of one pixel wide lines in binary images, and are
therefore not directly applicable to the detection of EBSP bands, which may be
regarded as lines of a width ranging from -2-10 pixels (in the reduced image of
100×100 pixels). As seen in figure 4.3.3.11, the width of the bands causes a large
spreading of the corresponding peaks in the HT, and the position of local maxima
(ρi,θi) in the Hough space array are not likely to correspond exactly to the center
lines of the EBSP bands. This problem is clearly illustrated by the following
example. Figure 4.3.4.1 shows an synthetic circular image containing 7 bands of
a 5 pixel width and figure 4.3.4.2 shows the normalized HT (corrected for
biasing) of this image. The local maxima of the HT has been found as indicated
by the black circles in figure 4.3.4.2, and the corresponding lines are displayed
with black pixels in figure 4.3.4.1. It is evident from figure 4.3.4.1 that the lines
obtained as the local maxima of the HT provides rather poor estimates of the
parameters of the center lines of the bands. The resolution of the Hough space
suggests a precision of ∆θ = π/120 = 1.5E on the orientation of the lines and a
precision of ∆ρ = %2@100/120 – 1.18 pixels on the line location. The orientation
resolution of ∆θ corresponds
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Figure 4.3.4.2 The normalized HT of
the image in figure 4.3.4.1. The black
circles are centered at the 7 highest
local maxima of Hough space
(120×120 pixels).

Figure 4.3.4.1 Circular image
with 7 bands of  5 pixel widths.
The black lines correspond to the
local maxima in figure 4.3.4.2
(100 x 100 pixels).
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to a distance on the circle sphere of ∆d = R@∆θ = 46@π/120 = 1.20 pixels, where
R is the radius of the circle image (for a line passing through the image center).
Obviously, the poor localization of the lines/bands in figure 4.3.4.1 can not be
explained from the precision imposed by the quantization of the Hough array.

To devise a method by which the center lines of bands may be extracted
from the Hough transform, the shape of the corresponding peaks must be taken
into account. The shape and size of peaks in Hough space has been studied by e.
g. Leavers & Boyce (1987), Brown (1983), Van Veen & Groen (1981) and
Davies (1992), but again these investigations have been limited to the case of
lines of one pixel width. The shape of peaks in parameter space generated by
bands of width w in image space, may be modelled by considering the Radon
transform of the 2D function illustrated in figure 4.3.4.3. Figure 4.3.4.3 shows a
continuous circular image I(x,y) of radius R, defined where x2+y2 # R2 and with
I(x,y) = 1 within the displayed band and with I(x,y) = 0 elsewhere. The area of
the band which falls inside the circular image has been approximated by a
rectangle of width w and length  to simplify the following expressions
for the Radon transform. This approximation will be adequate when w << R and
ρ0 < R!w, i. e. when the band width is small compared with the size of the image
and the band is not too close to the image border. It is easily shown (Deans, 1981)
that the Radon transform R(ρ,θ) of the image above is simply the length of the
line ρ =  xcosθ + ysinθ contained within the band (assuming that I(x,y) = 1 within
the band). The Radon transform may then - in this case - be calculated on a purely
geometrical basis without evaluation of complicated line integrals (equation
4.3.1.1). Relatively simple geometrical computations shows that the Radon
transform of the image in figure 4.3.4.3 can be partitioned into three distinct
regions A, B and C in continuous parameter space (ρ,θ), as shown in figure
4.3.4.4. The three regions A, B and C of the Radon transform of a band of width
w are separated by four sinusoid curves [1], [2], [3] and [4] (the curves appear
almost as straight lines in figure 4.3.4.4 because this figure only covers a small
area of the parameter space around the peak (ρ0,θ0), the area of interest). These
curves, which correspond to the four corners of the rectangle in figure 4.3.4.3, are
given by the following expressions,



74 4. Automated EBSP Analysis

Figure 4.3.4.3 Continuous circular image with
band of width w and normal parameters (ρ0,θ0)
of center line.

Figure 4.3.4.4 The three basic regions A, B, and C of the Radon
transform of a band. In the region marked 0, R(ρ,θ) = 0.
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(4.3.4.3)

(4.3.4.1)

(4.3.4.4)

(4.3.4.2)

(4.3.4.5)

(4.3.4.6)

In region A of the parameter space where  ρ[1] # ρ # ρ[2] and ρ[3] # ρ # ρ[4] the
Radon transform is given by

Note that the Radon transform within region A only varies with θ and has a
minimum at θ = θ0 and a maximum where ρ[1] intersects ρ[4] and ρ[2] intersects ρ[3],
i. e. for θ = θ0 ± atan(w/2(R2!ρ0

2)1/2). However, the term |cos(θ!θ0)| of equation
(4.3.4.5) only varies slightly within region A and RA(ρ,θ) is therefore practically
constant. In region B of the parameter space the Radon transform is given by

Within region B the Radon transform only varies with θ and has a minimum at
θ = θ0 ± π/2 and a maximum for θ = θ0 ± atan(w/2(R2!ρ0

2)1/2), i. e. where region
B meets region A (at this point RB(ρ,θ) = RA(ρ,θ)). Region C consists of four
distinct regions as illustrated in figure 4.3.4.4 and the Radon transform within
each region is given by
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(4.3.4.7)

(4.3.4.8)

Each of the four combinations of signs gives the Radon transform in the
corresponding C region. Here the transform depends on both the θ and ρ
parameter and has its maxima at (ρ,θ) = (ρ0,θ0 ± atan(w/2(R2!ρ0

2)1/2), i. e. where
region A meets region B and C. Figure 4.3.4.5-6 shows the Radon transform of
a band as a 3D plot and an image respectively (in practice the figures shows a
discrete Radon transform, i. e. essentially a Hough transform).

The results above can be used as a guide for choosing an appropriate
quantization of the Hough space array H(ρk,θl), ∆θ = π/Mθ and ∆ρ = %2N/Mρ.
This problem of selecting a proper quantization of the parameter space has been
considered by many authors, see e. g. Van Veen & Groen (1981), Risse (1989),
Yuen & Hlavac (1991) and Leung, Lam & Lam (1993), but all of this work has
been concerned with the detection of one pixel wide lines. The analysis above
shows that the size of region A, the central part of the peak, is Sρ = w in the ρ
direction and Sθ = 2atan(w/2(R2!ρ0

2)1/2) in the θ direction. In the discrete Hough
space the peak will thus be spread over nρ = Sρ/∆ρ = wMρ/%2N cells in the ρ
direction and nθ = Sθ/∆θ = 2Mθatan(w/2(R2!ρ0

2)1/2)/π in the θ direction. A
reasonable criteria for choosing Mθ and Mρ could then be obtained by requiring
that nθ = nρ, since this leads to the most compact peaks in Hough space. This
requirement leads to the following criteria for Mρ/Mθ:
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R(ρ,θ)

ρ
θ

Figure 4.3.4.5 The Radon transform of a band displayed as
3D graph.

Figure 4.3.4.6 The Radon transform
of a band displayed as digital image.
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For the EBSP images in our set-up N = 100 and R = 46. For a typical band of
width w = 5, equation (4.3.4.8) then gives Mρ/Mθ = 0.978 for a band passing
through the center ρ0 = 0 and Mρ/Mθ = 1.129 for a band at distance ρ0 = R/2 from
the center. This criteria suggests that choosing Mρ = Mθ = M is appropriate and
results in compact peaks in Hough space. The size of the Hough array M must
now be chosen to ensure a reasonable compromise between precision and peak
detection sensitivity. A fine quantization (large M) will - at least in theory -
enable a more precise band localization, but results in greater computational costs
and a larger spreading of the peaks, which complicates their detection. A coarse
quantization (small M) will on the other hand reduce the precision that can be
expected, but results in higher and more compact peaks that are more easily
detected. Because EBSP bands can be quite wide and noisy, it seems appropriate
to chose M as small as possible, but still large enough to ensure that the peak
spread n = wM/% 2&N is not smaller than one cell for the bands of the smallest
width. Since the smallest band width in out set-up is in the order of 1.5 pixels,
this criteria suggest a value for M of at least % 2&N/w = % 2&@100/1.5 = 94. Even
though a quantization of the Hough space with M = 90-100 leads to quite
satisfactory results, it was experienced that slightly larger values for M (120-140)
resulted in a more precise band localization without significantly reducing the
detection sensitivity. A value of M = 120 was found to represent a good
compromise between computational load, precision and peak detection sensitivity
but the exact value of M is not critical.

The shape and appearance of peaks in Radon/Hough space was studied
above (see figure 4.3.4.4-6) for the highly idealized image in figure 4.3.4.3.
Obviously, the EBSP band model presented in figure 4.3.4.3 is rather crude and
simplified, but it still provides a good qualitative understanding of peak formation
in the Hough transform of EBSPs. Figure 4.3.4.6 shows that the peak arising from
Hough transformation of a band appears as a butterfly (a term often used in the
literature), with its body in section A and its wings in section B and C. This
butterfly-like shape is characteristic for all peaks generated by different bands in
the image space, but the size of the butterfly will obviously dependent on the
band width (Sρ = w). Furthermore, the butterfly shape changes as the distance of
the band from the origin ρ0 changes from 0 to ±R; the width of region A, Sθ =
2atan(w/2(R2!ρ0

2)1/2) increases with |ρ0|. Figure 4.3.4.7 shows the peak generated
by a band localized at a distance ρ0 = 3R/4 from the center, and may be compared
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Figure 4.3.4.7 The Radon transform
of a band at distance ρ0 = 3R/4 from
the image origin.

(4.3.4.9)

with figure 4.3.4.6 where ρ0 = 0. It is evident that the butterfly in figure 4.3.4.7
appears slightly squeezed compared with the peak in figure 4.3.4.8, but the
general shape has been preserved. Based on similar observations of the butterflies
generated by one pixel wide lines, Leavers & Boyce (1987) proposed using a
matched butterfly filter for enhancing the peaks in Hough space. By convolving
the accumulated Hough space array by the following 3×3 convolution mask

the maxima in Hough space with a butterfly-like shape are enhanced at the
expense of other maxima (Leaver & Boyce, 1987). This idea was extended to the
detection of broad EBSP bands by Krieger Lassen, Juul Jensen & Conradsen
(1992), who designed a 13×13 butterfly mask for enhancing the peaks in a Hough
space quantized into 180×180 cells (M = 180). The size of such butterfly
masks/templates must be chosen to ensure that a sufficiently large part of the
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(4.3.4.10)

peaks are covered by it, and will therefore depend on both the band width w and
the Hough space quantization M. Experiments with masks of different size has
shown that square masks of size h×h, where h • 2[Mw/% 2&N] + 3, are well suited
for enhancement of peaks generated by bands of width w in an image of size
N×N when the Hough space is of size M×M. Based on the simple model for
EBSP bands presented above and the corresponding Radon transform, a number
of butterfly masks of different size were generated and tested on a number of
typical EBSPs. In all cases, the ideal bands where assumed to be located at the
image center where ρ0=0. Since the width of EBSP bands in our set-up varies
from -1.5 to -10 pixels, it is obviously impossible to design a single mask that
will match all the corresponding peaks in Hough space. However, it was found
that the following 9×9 convolution mask, designed for optimal performance for
w=4 and M = 120, gave good results over a large range of band widths:

Returning to the problem of localizing the seven bands in the synthetic image
figure 4.3.4.1, figure 4.3.4.8 shows the normalized HT (corrected for biasing)
after convolution with the mask in equation (4.3.4.10). The local maxima of the
filtered HT has been found as indicated by the black circles 
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Figure 4.3.4.9 Synthetic circular
image with 7 bands of 5 pixels width.
The black lines corresponds to the local
maxima in figure 4.3.4.8 (100×100
pixels).

Figure 4.3.4.8 The normalized HT of
figure 4.3.4.9 after convolution with
butterfly mask. The center of the black
circles indicate the local maxima
(120×120 pixels).
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in figure 4.3.4.8, and the corresponding lines are displayed with black pixels in
figure 4.3.4.9.

The effect of filtering the HT with the butterfly template is evident in
both figure 4.3.4.8 and 4.3.4.9. There are essentially two different advantages of
using this matched filtering technique for localizing peaks in the HT: First of all
the filtering process reduces the effects of noisy image data by smoothing out any
spurious maxima that may be generated by such data (noisy data are unlikely to
generate a butterfly peak in Hough space). Secondly, the butterfly template
ensures that the maxima after filtering are located at the center of the peaks so
that the center lines of the bands are found. This requires of course, that the filter
matches the peaks in the HT; a requirement that can never be completely fulfilled
for EBSP images.

When the local maxima of the filtered HT have been located, the
precision of the detected lines can be slightly increased by performing a simple
interpolation in the Hough space (this was done for the peaks detected in figure
4.3.4.8). It was found, that a simple interpolation strategy based on fitting a
quadratic polynomial, y = ax2 + bx + c, to the peak H(ρk,θl) and its two nearest
neighbors in the ρ and θ direction respectively, lead to slightly better results than
simply using the maxima. Assume that a local maximum has been detected at
(ρk,θl) and let x1 = θl-1, x2 = θl, x2 = θl+1, y1 = H(ρk,θl!1), y2 = H(ρk,θl) and y3 =
H(ρk,θl+1) denote the positions xi and values yi of the HT at the maximum and its
two nearest neighbors in the θ direction. The interpolating quadratic polynomial
going through (x1,y1), (x2,y2) and (x3,y3) is then given explicitly by Lagrange's
classical formula (see e. g. Press et al., 1988, pp. 88) and the maximum of this
polynomial may then easily be found as

One may then obtain sub-pixel accuracy in the Hough array by using xmax as an
estimate of the position of the "true" peak in the θ direction. Similar, the position
of the "true" peak in the ρ direction may be found from equation (4.3.4.11) when
x1 = ρk-1, x2 = ρk, x2 = ρk+1, y1 = H(ρk-1,θl), y2 = H(ρk,θl) and y3 = H(ρk+1,θl). The
positive effect of this interpolation strategy is quite significant for thin and bright
EBSP bands but becomes less distinct as the width of the bands increase. It was



4.3. The Hough Transform for Band Localization                   83

Figure 4.3.4.10 The normalized HT of
the EBSP in figure 4.3.4.11 after
convolution with butterfly mask. The
center of the black circles represents
the 10 largest local maxima (120×120
pixels).

also observed, that more complicated interpolation methods involving larger
neighborhoods around the peaks, did not improve the band localization.

Figures 4.3.4.10-11 show the result of applying the procedure described
above for localizing the bands of an EBSP. Note that the detected lines have been
displayed in the image of size 400×400 pixels and not in the reduced 100×100
pixel image, from which the HT was calculated. The presented result is typical
for EBSP of good quality and shows that the vast majority of the bands can be
located with a high precision even though the width of the bands is very diverse.
However, figure 4.3.4.11 also shows, that the thickest bands are significantly less
accurately localized than the thinner bands. This is an inevitable consequence of
the compromise made in the design of the butterfly mask, and it may be shown
that if a larger mask is used (such as the 13×13 mask proposed in Krieger Lassen,
Juul Jensen & Conradsen, 1992), the localization of the wide bands is indeed
improved, but at the expense of the localization of thin lines.
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Figure 4.3.4.11  EBSP from pure copper. The black lines correspond to the local
maxima in the filtered HT, figure 4.3.4.10 (400 x 400 pixels).

The Hough transform is renowned for its insensitivity to noisy data, and the
filtering of the HT should further reduce the effects of noise. One would therefore
expect the presented procedure to work well for EBSP images of low quality. 
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Figure 4.3.4.12  Low quality EBSP image from a deformed region of pure
copper. The black lines correspond to the 10 highest maxima in the filtered HT
(400 x 400 pixels).

That this is indeed  the case is illustrated in figure 4.3.4.12, where 10 bands have
been localized in a low quality EBSP from a deformed region in partly
recrystallized copper. Figure 4.3.4.12 shows that even bands, which are hardly
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recognized by the human eye, can be localized with good accuracy by the
procedure (obviously, the accuracy of the band localization is rather difficult to
judge by visual comparison in this case). This observation regarding the
performance of the procedure for low quality patterns is typical, and in general,
the procedure seems to be capable of competing with the human eye with regards
to the detection of hardly visible bands.

The procedure presented above is capable of localizing EBSP bands with
a precision and reliability that is more than adequate for obtaining a well
functioning and reliable fully automated EBSP analysis system. However, there
are obviously still parts of this procedure that may be improved upon. The author
believes that such improvements should be made in the peak detection part of the
procedure; i. e. in the part discussed in this section. For example, it seems
obvious, that the performance of the procedure could be improved by using
butterfly masks of a variable size that would match the size of the actual peaks;
i. e. some sort of adaptive template matching. However, it seems difficult to
devise ways by which such a procedure could be developed. It seems more likely
that an alternative procedure, which is not based on filtering the HT, could be
designed. Such a procedure should - in some way - utilize information about the
expected peak shape, i. e. be based on an analysis like the one presented above.
For example, if the local maxima of the (unfiltered) HT are all found somewhere
within region A of the butterfly peak (figure 4.3.4.4), the center of the peaks θ0
in the θ direction may be found from the expected symmetry around θ0. Once the
center of the peaks in the θ direction has been found, it should be possible to find
the corresponding center ρ0 in the ρ direction by considering the profile of the
peak in that direction. This profile should correspond to the profile of the
corresponding band (something like figure 2.4.3) and would therefore show a
rapid decline at the boarders of the band. The center of the peaks ρ0 could then be
found as the center between the two points in the profile, where the decline has
a maximum. This procedure would not only extract information about the center
lines of the bands, but would also provide estimates of their width. Initial work
with the development of such a procedure has shown promising results, but
further details on this work will not be presented here. It may be advantageous to
combine the current butterfly filtering approach to peak/band localization, with
elements of the procedure sketched above; for example in order to extract band
width information.
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4.4 A Measure for the Quality of EBSPs
The quality of an electron backscattering pattern may be described by the

amount of noise in the image, the contrast of the bands (the band intensity relative
to the background intensity) and the sharpness of the band edges. However, the
quality of an EBSP is of course a rather subjective concept, which is not easily
quantified unless some strict definition is devised. The quality of EBSPs - as it
would normally be defined by a human observer - is affected by many factors:
The geometrical set-up (screen position relative to sample), the imaging system
(phosphor screen and camera system), the working conditions (e. g. beam current,
acceleration voltage), image processing (frame store and frame grabber) and the
sample material (surface topography, atomic number and crystal lattice
perfection).

There are several reasons why it would be desirable to have a some
quantitative measure for the quality of EBSPs. In a fully automated EBSP system,
where crystal orientation data is extracted from unsupervised patterns, it is
important (in many cases essential) to have an idea of the reliability and precision
of the orientation data. It is obvious that the quality of the patterns provides such
a measure of data reliability (together with other measures, such as the overall fit
between the localized bands and their indices, see section 3.3). Furthermore, the
quality of the pattern contains important information about the sample material,
which may be utilized in various studies. The quality of EBSPs is namely
strongly affected by imperfections in the crystal lattice in which the diffraction
process takes place. For example, the EBSP quality can be used to distinguish
between recrystallized and deformed regions of  material in partly recrystallized
samples, because the larger dislocation density in the deformed regions results in
a degraded pattern quality. The pattern quality measure presented in this section
was partly developed with the intention of performing such investigation
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automatically (Krieger Lassen, Juul Jensen & Conradsen, 1993). Other
researchers have tried to measure elastic lattice strains on the basis of pattern
quality (Wilkinson & Dingley, 1991; Troost, van der Sluis & Gravesteijn, 1993).
The quality measure presented here is not intended for use in such investigations.

A measure for the quality of EBSPs, intended for use in a fully automated
system, must fulfill a few basic requirements: It should be easy to integrate into
the automated system, it should require a small amount of computation time only
and it should provide a measure that agrees with the users definition of pattern
quality. The measure presented in the following has been found to fulfill these
requirements. Initially the digitized EBSP must go through the same
preprocessing stages, that were described in section 4.2, i. e. background
subtraction, pixel value stretching, correction for aspect ratio, resolution
reduction, correction for background intensity variations and extraction of
circular image (figure 4.2.6). For reasons that will later become obvious, an
image of 64×64 pixels is extracted from the center of the preprocessed image.
Figure 4.4.1 and 4.4.2 show two EBSPs of high and low quality after
preprocessing. It is evident from these figures, that the image of low quality
appears much more noisy than the high quality image, and it seems likely that this
difference may be observed in an analysis of the frequency components of the
images.
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Figure 4.4.2 EBSP of low quality
after preprocessing and extraction of
64×64 pixels from image center
[Q=0.41].

Figure 4.4.1 EBSP of high quality
after preprocessing and extraction of
64×64 pixels from image center
[Q=0.56].



90 4. Automated EBSP Analysis

(4.4.1)

(4.4.2)

Such an analysis can be performed via the discrete two dimensional Fourier
transform of the image I(x,y)

where n is the image dimension, i. e. n = 64 in this case. Note that n is chosen as
a power of 2 so that the Fourier transform may be calculated from the fast Fourier
transform (FFT) algorithm, see e. g. Press, Flannery, Teukolsky & Vetterling
(1988). The Fourier transform of an image with 64×64 pixels can be calculated
via the FFT in only -0.3 seconds on a standard 80486/33MHZ PC. The
magnitude of the complex F(u,v), often referred to as the Fourier spectrum S(u,v),
is then found as

where Re(F) and Im(F) refers to the real and imaginary part of F respectively. The
logarithm of the spectra of the images in figure 4.4.1 and 4.4.2 are shown in
figure 4.4.3 and 4.4.4 respectively (the logarithm is useful for displaying a
Fourier spectrum). Both spectra show a decline in the content of low frequency
components (the center of the displayed spectra), which is introduced in the
preprocessing step, where slow intensity variations is removed by subtraction of
a low-pass filtered version of the image. The linear features that are observed in
both spectra, but most notably in the spectrum from the high quality image (figure
4.4.3), are introduced by the EBSP bands. It may also be observed from the
spectra that the high quality EBSP has a larger content of low frequency
components than the low quality EBSP, which has a more uniform spectrum. This
observation can be clarified by considering the average values of the spectrum in
non-overlapping concentric rings centered at the spectrum center (DC), see figure
4.4.5. The average values within each ring (15 rings where used) was calculated
for the two spectra, and the result is seen in figure 4.4.6. The figure shows, that
the EBSP of high quality has a larger content of low frequency components and
a lower content of high frequency components than the poor quality pattern. The
frequency content of the low quality EBSP is more uniformly distributed among
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Figure 4.4.3  The logarithm of the spectrum of the high quality image in figure
4.4.1 (64 x 64 pixels).

Figure 4.4.4  The logarithm of the spectrum of the low quality image in figure
4.4.2 (64 x 64 pixels).
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Figure 4.4.5 Partition of Fourier spectrum into n concentric rings.

Figure 4.4.6 Average values of the Fourier spectrum in 15 rings for a high and
low qualtiy EBSP, respectively.
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(4.4.3)

(4.4.4)

(4.4.5)

the different frequency components and is approaching that of white noise. A
quantity which seem appropriate for measuring the observed differences in the
Fourier spectrum is the inertia I of S(u,v) around the center (u,v) = (0,0) defined
by:

Note that the inertia of the spectrum (or rather the spectrum itself) has been
normalized by the total energy of the spectrum. The inertia decreases as the
spectrum becomes successively more concentrated at low frequencies, and should
thus be larger for low quality images than for images of higher quality. The
theoretical lower bound for the intertia I is 0, which is obtained for a completely
uniform image I(x,y) = K, which has a DC frequency component only. A
theoretical upper bound for I is obtained when the image contains white noise, and
the Fourier spectrum therefore becomes uniform S(u,v) = K; the maximum intertia
of the spectrum Imax is easily found from equation (4.4.3) as

The quantity I/Imax will then vary from 1 for a white noise image to 0 for a uniform
image. As first suggested by Krieger Lassen, Juul Jensen & Conradsen (1993), the
following quantity Q may be applied as measure for the quality of EBSPs

For a white noise image Q = 0. For the EBSP images in our system, the lower
limit for Q is of the order of 0.3, which is obtained for patterns with no
recognizable bands. The upper limit observed for the patterns in our system seems
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to be around 0.6, which is obtained for patterns of very high quality. The Q values
for the images in figure 4.4.1 and 4.4.2 are 0.56 and 0.41, respectively.

The EBSP quality parameter presented above is essentially a measure for
the noise level of the images, as it is observed after preprocessing and at the given
resolution. It requires very little computation time and is easily integrated into the
automated EBSP system, because the required preprocessing is the same as for the
band localization procedure. Practical experience with the Q measure has shown,
that it agrees well with the pattern quality, as it is defined by a human observer.
The three EBSPs shown below in figures 4.4.7-9 has Q values lying well spread
between the Q values for the two EBSPs shown above, i. e. between 0.41 and
0.56. These three figure, together with figure 4.4.1 and 4.4.2, demonstrate a nice
agreement between the visual quality of the images and the corresponding Q
values.

The EBSP quality measure presented above may be applied for automatic
recognition of deformed and recrystallized regions in partly recrystallized
samples. The potential of such a method was investigated in Krieger Lassen, Juul
Jensen & Conradsen (1993) for 10 different samples of partly recrystallized
aluminium and copper (details are given in the reference above). An experienced
operator classified -100-200 patterns from each sample into two classes: The
class of relatively low quality patterns from deformed regions of material, and the
class of relatively high quality patterns from recrystallized regions of material. It
is important to realize, that the operator performs the classification not only on the
basis of the pattern quality, but also from the pattern variations observed in the
vicinity of the area from which the pattern is obtained (the diffuse patterns from
deformed regions of  material shift rapidly with relatively small changes in
position, 
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Figure 4.4.8 EBSP after
preprocessing and extraction of 64×64
pixels from image center [Q=0.49].

Figure 4.4.7 EBSP after
preprocessing and extraction of 64×64
pixels from image center [Q=0.45]. 
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Figure 4.4.9 EBSP after
preprocessing and extraction of 64×64
pixels from image center [Q=0.53].

whereas the high quality patterns from recrystallized material remains stable
over a relatively large distance; this information is utilized by the experienced
operator in the classification process). For each of the patterns which were
classified by the operator, the quality measure Q was calculated. The result for
101 EBSPs from an aluminum sample (AA1050, cold rolled 90%, annealed
isothermally at 280EC in bath, 39% volume fraction of recrystallized material) is
illustrated in figure 4.4.10. This figure clearly illustrates, that the patterns from
recrystallized regions generally has larger Q values than the patterns from
deformed regions of material. However, it may also be observed, that the two
populations of patterns ( for patterns from recrystallized material,  for patterns
from deformed material) have overlapping Q values, and it would therefore not
be possible to obtain a classification based purely on the Q values, which would
result in no classification errors; i. e. devise a boundary value Q0 that would
completely separate the two populations. The line marked with an A in figure
4.4.10, indicates the boundary value QA, which results in the smallest number of
misclassified patterns (the number of white circles above the line plus the number
of black circles below the line). For the 10 samples analyzed in Krieger Lassen,
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Figure 4.4.10 Quality parameter Q and corresponding classification (indicated
by the black and white circles) of 101 patterns from aluminium sample (see
text for details). The line marked A indicates the Q value, which results in the
smallest number of misclassified patterns.

Juul Jensen & Conradsen (1993), the percentage of misclassified patterns was
found to lie from 1.0% to 11.0%. There may be several reasons why the pattern
classification performed by the operator is not fully in accordance with the Q
measure: As mentioned above, the operator does not base his/hers classification
entirely on the quality of the patterns, but also on observations of the patterns in
the surrounding neighborhood. It must also be noted, that a human operator is
never perfect; different operators may very well produce diverging classifications,
and the same operator may not be consistent. A more general problem is areas of
extended recovery, which may often be observed near recrystallization interfaces
(Porter & Ralph, 1983), and will produce EBSPs of high quality. Despite these
problems, the preliminary investigations presented in Krieger Lassen et al. (1993)
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are promising, and indicate that EBSPs may very well be used for automated
recognition of deformed and recrystallized regions of material. The ideas
presented in Krieger Lassen et al. (1993) can easily be extended to include more
information than merely the pattern quality. If a line scan is made across a partly
recrystallized sample, and the step size is chosen appropriately small,
recrystallized regions of the sample would be easy to recognize from the high
values of Q and the stability of the orientation measurements across the region.
By combining the information about position, image quality and crystal
orientation the recognition of deformed and recrystallized regions of material
becomes more certain.

The quality measure presented above is of course just one of many
measures that could be suggested. A natural alternative would be to extract some
appropriate measure from the Hough transform of the preprocessed EBSPs. The
HT (or rather the normalized HT, see section 4.3) of an EBSP containing pure
noise would be practically uniform, whereas the appearance of bands in the EBSP
would result in the appearance of butterfly peaks in the Hough space. A quality
measure based on the HT should thus in some way measure the "amount" of
butterfly peaks in the normalized HT. It was suggested by Kunze, Wright, Adams
& Dingley (1993) to simply use the sum of the local peak maxima of HT as a
measure for pattern quality. Since the magnitude of a peak in Hough space
represent a measure for the average intensity of the corresponding band in the
EBSP, this seems like an intuitively appealing measure. In practice, however, the
author found this measure to be less satisfying than the measure presented above
(it seemed to agree less well with a visual judgement of image quality). The exact
implementation of the measure is not quite clear from the paper by Kunze et al.
(1993), and a fair comparison can therefore not be given here. Another measure
for the quality of EBSPs was proposed by Wright & Adams (1992). This measure,
which is directly related to the output of the Burns algorithm, was reported to
correspond well to a subjective measure of image quality as perceived by the
human eye.



Chapter 5

The Precision of 
Crystal Orientations 
Determined from EBSPs

5.1 Introduction
The EBSP technique is a powerful tool for measuring the orientation of

crystals with high spatial resolution, and it is of course of fundamental importance
to have knowledge about the precision of the orientation data, that can obtained
with this technique. It is important to realize that the orientation of a crystal is not
a quantity which can be directly observed but rather must be estimated from data
(here the directions of the crystal plane normals). Following standard notation, the
unknown rotation matrix describing the crystal orientation is denoted g and its
estimate is denoted . In statistical language, the orientation/rotation g is an
unknown parameter, and its estimate  is subject to error caused by errors in the
data. Statistics studies the process by which errors in the data is transmitted into
errors in the estimate. Several authors have studied the precision of crystal
orientations determined from EBSPs (Venables & bin-Jaya, 1977; Harland,
Akhter & Venables, 1981; Dingley, Longden, Weinbren & Alderman, 1987;



100                  5. The Precision of Crystal Orientations Determined from EBSPs

(5.1.1)

Schmidt, Bilde-Sørensen & Juul Jensen, 1991). A general problem in these
studies, however, has been a lack of statistical methodology; the uncertainty in the
measured orientations was not described in a mathematical stringent way, e. g. by
probability distributions or confidence limits. An explanation for this may be, that
the statistical analysis of data in the form of orientations/rotations is a relatively
new discipline in the field of analytical statistics, and the results that has been
presented in the literature on this subject (e. g. Downs, 1972; Kathri & Mardia,
1977; Chang, 1986; Prentice, 1986) are not yet widely known outside the
statistical community. An introduction to, and the key references for, statistical
methods for analyzing orientation data has been presented by Krieger Lassen, Juul
Jensen & Conradsen (1994).

Following the notation of section 3.1, U, V and W denotes standard
Cartesian coordinate systems fixed to the crystal, the pattern and the sample
respectively. Let the unit vectors ni, i = 1,...,n, represent the normal to n
crystallographic planes, whose traces are observed in the EBSP. The crystal plane
normals measured in U ([ni]U), V ([ni]V) and W ([ni]W) will in the following be
denoted ui, vi and wi respectively. Recall that the orientation of the crystal is
defined as the rotation matrix g, which describes the rotation from the sample
system W to the crystal system U, so that ui = gwi. The rotation from the crystal
system U to the pattern system V is described by X, so that vi = Xui, and the
rotation from the pattern system V to the sample system W is described by Y, so
that wi = Yvi. The orientation of the crystal with respect to the sample frame W,
its absolute orientation described by g, is then determined from

In practice, the rotations X and Y must be estimated from data as  and , and
the estimate of the absolute crystal orientation g is then found as .
The uncertainty in the estimated orientation , the absolute precision of the
measured crystal orientations, is given by a family ∆g of hopefully small
rotations. The rotation matrix Y, which describes the rotation between the pattern
and the sample system, is constant for a given sample positioned in microscope,
and the relative orientations between pairs of crystallites are therefore not affected
by it. The uncertainty in the estimated rotation matrix , given by a family ∆X
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of hopefully small rotations, may therefore be referred to as the relative precision
of the measured crystal orientations .

The absolute precision ∆g of a measured/estimated crystal orientations 
may be found as a combination of the precision ∆Y of the estimated rotation 
and the relative precision ∆X of the estimated rotation . The results presented
in the following section will only be concerned with the relative precision, i. e.
with ∆X, and the precision of  and thus the absolute precision ∆g shall only be
briefly discussed. The uncertainty in  is a result of the fact, that it is physical
impossible to position each sample with its external axes (typically RD, TD and
ND) pointing in exactly the same directions relative to some completely fixed
axes (typically the directions of the microscope stage). From equation (5.1.1) the
rotation matrix Y is easily found as Y = (Xg)T = gTXT. The uncertainty in  may
then be studied by measuring   and then calculating  several times
for the same crystal of known orientation g; between each measurement, the
sample and the phosphor screen is withdrawn from the microscope, the crystal
remounted and inserted into, and aligned, in the microscope again. The observed
variations in  and therefore in  will thus reflect the uncertainty in 
(g is constant). The problem with this method is, of course, that the observed
variations in  are not only introduced by variations in the sample alignment, but
also caused by the inherent uncertainty in  (discussed in detail in the next
section). The uncertainty in  is due to uncertainties in the position of the EBSP
bands and the calibration parameters [t]V = (x0,y0,!R). If the uncertainty in the
calibration parameters can be ignored , the problem with the uncertainty in  may
- at least to some extent - be overcome by calculating  several times (using
many bands, see the next section) and then determine the average rotation . A
procedure for averaging orientations/rotations can be found in Krieger Lassen,
Juul Jensen & Conradsen (1994). When the rotation matrix  has been
measured several times, the uncertainty in  can be described by fitting the
sample of rotations  to an appropriate probability distribution. This problem,
which is far from trivial, is considered in Krieger Lassen et al. (1994), and in
many of the references given therein (e. g. Khatri & Mardia, 1977; Prentice, 1986;
Wood, 1993). An investigation of the precision of  has not yet been carried out
by the author and remains to be performed in the near future.
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(5.2.1)

5.2 The Relative Precision of
Crystal Orientations
Determined from EBSPs
The rotation matrix X describes the orientation of the crystal with respect

to the pattern system, and can be measured or - in statistical language - estimated
from n pairs of unit vectors (ui,vi), i = 1,...,n, representing the crystal plane
normals ni measured in the crystal frame U and the pattern frame V respectively.
The uncertainty in the estimated rotation matrix  is given by a family ∆X of
hopefully small rotations and may be referred to as the relative precision of the
measured crystal orientations . The crystal plane normals referred to the crystal
system ui are determined from the corresponding Miller indices (hikili), which
again has been determined in the indexing process (see section 3.1 and 3.3). The
unit vectors ui are thus known precisely, assuming that the indexing has been
successful; possible bands which could not be correctly indexed must be
eliminated prior to the estimation of X (see section 3.3). The crystal plane normals
referred to the pattern system vi are determined from the position of the bands in
the pattern and the estimated calibration parameters  = (x0,y0,!R), see
equation (3.1.6). Due to the inevitable uncertainty in the position of the bands and
the calibration parameters, the unit vectors vi are subject to variation or error, but
had they been known precisely, there would exist a matrix X 0 SO(3) such that
vi = Xui for each i. As described in section 3.1, a natural estimate of the unknown
rotation matrix X can be found from the erroneous data (ui,vi) by minimizing the
of sum squared errors SSE(X) defined by

The matrix  which minimizes SSE(X) is denoted the least squares estimate of
X, and it may be calculated as described in section 3.1.

The uncertainty in  could  be studied by repeatedly pointing out a
number of bands in the EBSP, and then observe the resulting spread in the least
squares estimates . Such an approach has, however, several important
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limitations: First of all, some appropriate strategy for selecting the bands are
needed; which, and how many bands should be used? If, for example, only two
bands are used, the observed spread in the values for  will  be smaller if the
same pair of  bands is used repeatedly (e. g. {v1,v2}), than if different band pairs
are used (e. g. {v1,v2}, {v1,v3}, {v2,v3}, ...). The reason for this is, that if the same
pair of bands is used repeatedly, the spread in  will only reflect the errors in
band localization. If instead different band pairs are used, both the effect of errors
in band localization and calibration parameters are observed (errors in the
calibration parameters affect the vectors vi). Alternatively, one could choose to
use repeatedly all of the bands, that can be localized with a reasonable precision
in the EBSP (i. e. the same collection of bands is used in each calculation of ).
The observed spread in  will then be significantly smaller, than when different
combinations of only two bands are used; this seems intuitively reasonable, but
is also observed in practice. However, since the same collection of bands is used
in each calculation of , the errors in the calibration parameters are not reflected
in the observed variations in the estimated X's. A final problem with the approach
outlined above is, that the observed spread in the estimated X's must be
summarized by a statistically meaningful measure of uncertainty, i. e. by the
parameters of an appropriate probability distribution or by a confidence region.
A different approach to determining the uncertainty in an estimated rotation  is
presented in the following. This approach largely eliminates the problems outlined
above.

The probability distribution of any estimated parameter, and in particular
of an estimated rotation , is derived from an assumed probability of the data
(ui,vi) and the method of deriving the estimate. Consider here, the least squares
estimate  obtained by minimizing SSE(X) defined in equation (5.2.1); other
estimates could of course be defined, but the least squares estimate has some
attractive mathematical properties. The problem of fitting an unknown rotation X
to directional data (ui,vi), where ui • Xvi, has some similarity to linear regression
problems, e. g. the problem of fitting a set of data points (xi,yi) to a straight line
model. The problem was therefore named spherical regression by Chang (1986),
who made a comprehensive study of the statistical properties of . Recent
surveys on this subject has been given by Watson (1989) and Chang (1993). In
order to make inference about the precision of the least squares estimate  two
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(5.2.2)

(5.2.3)

problems must be solved: First an appropriate representation of the uncertainty in
rotations must introduced; i. e. a suitable parameterization of the group of all
proper rotations SO(3) must be devised. This very fundamental problem is
discussed in Chang, Stock & Molnar (1990), Hanna & Chang (1990) and Chang
(1993). Secondly, a suitable model for the errors in vi must be introduced.

Mathematically a rotation of a 3D object is described by a 3×3 matrix X
subject to the conditions: XXT = XTX = I and det(X) = 1, where I is the 3×3
identity matrix, and "det" means the determinant. These equations represent six
independent conditions on the nine entries of X, and hence the matrix X is
uniquely defined by three parameters. A parameterization of the group of all
proper rotations SO(3) (more formally known as the special orthogonal group) is
a representation of each matrix in SO(3) by a triplet of numbers; that is, a unique
mapping from R3 to SO(3). Numerous parameterizations of rotations exist,
including e. g. the very popular Euler angles, unit length or normalized
quarternions or the exponential parameterization, which will be used in the
following. Let h 0 R3 be a 3×1 parameter vector whose coordinates are (h1,h2,h3).
This vector is mapped by Φ to a rotation Φ(h)0SO(3), which represents right-hand
rule rotation of ω = |h| = (h1

2+h2
2+h3

2)1/2 radians around the axis h/|h|. Define the
skew-symmetric 3×3 matrix H by

The exponential map Φ of h is then defined by  φ(h) = I + H + H2/2! + H3/3! +
... = exp[H]. This sum reduces to (e. g. Altman, 1986)

Conversely, given a rotation X, the rotation angle ω and the axis h/|h| = h/ω can
be found from
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(5.2.4)

The exponential parameterization presented above is generally applicable, but is
especially well suited for describing small rotations, i. e. with ω = |h| << 1 and
Φ(h) . I. Note that Euler angle parameters has a singularity at the identity I - the
null rotation - where the Euler angle Φ = 0E (not to be confused with the
exponential map Φ), and hence is not suitable for parameterizing small rotations.
Another important advantage of the exponential parameterization is, that it
introduces only small distortions to the size and shape of a region of small
rotations ∆X, e. g. those contained within a confidence region. "Shape and size"
are properties derived from the notion of distance, and the aim is to find a
parameterization with the property, that the standard Euclidean measure of
distance in parameter space R3 (e. g. the distance between rotation A and B is
|hA!hB|) corresponds to the "natural" measure of distance D(A,B) in SO(3). It may
be shown (Chang, Stock & Molnar, 1990), that the only "natural" measure of
distance between two rotations A and B is D(A,B) = rotation angle of BTA, and
that the exponential parameterization preserves reasonably faithfully these
distance relationships in regions of small rotations ∆X.

In order to describe the probable errors in an estimated rotation  in the
form of a confidence region, a model for the errors in the data (ui,vi) must be
presented. As described above, the unit vectors ui are not subject to error
(assuming a successful indexing), whereas the errors in the vi vectors are caused
by the inevitable uncertainty in the position of the EBSP bands and in the
calibration parameters. While it may be possible to describe the uncertainty in
both the position of the bands and in the calibration parameters (e. g. using a
Gaussian probability distribution), it is still extremely complicated to describe -
analytically - how these errors affect the calculated unit vectors vi. A model which
can be handled analytically and seems suitable for describing the errors in the vi's
for EBSPs is described in the following. Assume that the ui's are known without
error and that the vi's are symmetrically distributed around Xui for some unknown
rotation matrix X; i. e. the distribution of vi depends only upon the distance from
vi to Xui, vi

TXui. In addition, it is assumed that the vi's are independently Fisher
distributed f(vi;Xui,k) with modal vectors Xui and common concentration
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(5.2.5)

(5.2.6)

parameter k. The Fisher distribution (Fisher, 1953) is widely employed for
modeling directional data x (data in the form of unit vectors, xTx = 1) and has
probability density

with respect to the uniform distribution on the unit sphere S2 in 3-space. The
modal or mean direction m is the unit vector which maximizes equation (5.2.5)
and k $ 0 is a parameter which describes the concentration of x around m. For k
= 0, x is uniformly distributed over the unit sphere S2. In the case considered here,
where the vi's are determined from the calibration parameters and the position of
EBSP bands, the assumption about Fisher distributed f(vi;Xui,k) errors can be
shown to be suitable. The Fisher model has been verified by applying different
goodness-of-fit tests (both so-called Q-Q plots and more formal procedures has
been applied; see for example Fisher, Lewis & Embleton, 1987, pp. 117) to the
data sets (ui,vi) obtained from several different patterns. All such goodness-of-fit
tests has shown a nice agreement with the Fisher model. Finally, it will be
assumed in the following, that the concentration parameter k is large; that is, the
errors in vi are small (vi . Xui). Since  typical estimates of k are in the order of
3000-20000 for EBSP data, and k values from 10 to 100 usually are assumed to
be large, the large k assumption seems appropriate.

On the basis of the model presented above, an approximate confidence
region for the unknown rotation X can now be described using the exponential
parameterization. A formal derivation of the error in  is far beyond the scope of
this presentation, but can be found in Rivest (1989), see also Chang (1987). First
the unknown concentration parameter k of the Fisher distribution must be
estimated from the data. For large k, a good approximation to the maximum
likelihood estimate of k is (Watson, 1983)

However, especially for small sample sizes, the least square estimate of k can be
substantially biased upwards (i. e. underestimating the errors). For sample sizes
less than 16, Fisher et al. (1987) proposes instead the following estimate for k
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(5.2.7)

(5.2.8)

(5.2.9)

where n is the number of data points. Since n typically ranges from 2 to 12 for
EBSP data (the number of bands used for estimating X), this estimate of the
concentration parameter will be used in the following. The estimated
concentration parameter of the Fisher distribution  is a measure for the
uncertainty in the vi's and thus for the uncertainty in the calibration parameters and
the position of the EBSP bands. While  directly affects the size of the confidence
region for X, the following matrix Σ will describe the shape of that region

This symmetric 3×3 matrix summarizes information about the position of the
points ui (the vectors ui may be regarded as points on the unit sphere). Let σ1 $ σ2
$ σ3 $ 0 be the positive eigenvalues of G satisfying σ1 + σ2 + σ3 = 1, and let z1, z2
and z3 be the corresponding eigenvectors. The eigenvector z1 will lie in the center
of the points ui, and the plane defined by z1 and z2 will intersect the unit sphere in
the great circle which best fits the point ui. If the ui's are uniformly distributed
over the unit sphere, σ1 = σ2 = σ3 = a. A confidence region of X will now be
described as a family of possible rotations (∆X) , where  is the least squares
estimate of X and ∆X represents a family of small rotations. The collection of
small rotations ∆X will be described using the exponential parameterization as a
region in the parameter space h 0 R3. An approximate (1!α) confidence region for
X is then expressible as the following collection C of rotations (Chang, 1987)

where F1!α(3,2n!3) is the (1!α) percentage point of the F distribution with
(3,2n!3) degrees of freedom. In other words, the confidence region C={Φ(h) }
consists of all rotations obtainable by taking the estimated rotation  and
following it by all small rotation Φ(h), where h satisfies
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(5.2.10)

(5.2.11)

The region of parameter space h 0 R3 satisfying equation (5.2.10) is a solid
ellipsoid with axes z1, z2 and z3 and axis lengths ∆ωi, i = 1,2,3, given by

The lengths of the ellipsoid axes are denoted ∆ωi to emphasize that they represent
the uncertainty in  measured in angles of rotation. Note that ∆ω1 $ ∆ω2 $ ∆ω3
since σ1 $ σ2 $ σ3. The uncertainty in  is largest in the direction z1 (in the
parameter space h) and smallest (the confidence region is best constrained) in the
direction z3.

As an example, consider now the data obtained by automatically
localizing and indexing the bands of a high quality EBSP from pure copper. The
output of the EBSP analysis is 10 pairs of unit vectors (ui,vi), i = 1,...,10, and the
least squares estimate  of the crystal orientation with respect to the pattern
frame V; expressed in Euler angles  is given as (n1,φ,n2) =
(84.10E,16.21E,108.21E). The concentration parameter k of the Fisher distribution
is then estimated from the data using equation (5.2.7) as  = 25832, and the
matrix G, which describes the distribution of the crystal plane normals ui
measured in the crystal frame, is found from equation (5.2.8) as

The eigenvalues of Σ are (σ1,σ2,σ3) = (0.5726,0.3611,0.0663) and since F0.95(3,17)
= 3.20, the three rotation angles which describes the size of the confidence region
are
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By calculating 900 points h on the surface of the ellipsoid defined by equation
(5.2.10), determine the corresponding rotations Φ(h)  on the boarder of the
confidence region C and converting all the rotations to Euler angles, a plot of the
95% confidence region for X in Euler space can be obtained. A scatter plot of
points (represented by small spheres) on the boarder of this confidence region in
Euler space is given in figure 5.2.1. Recall, that in the parameter space h of the
exponential parameterization Φ, the 95% confidence region is a solid ellipsoid
with semi-axes lengths (∆ω1,∆ω2,∆ω3) = (0.5343E, 0.4370E, 0.3615E); i. e.
relatively close to a solid sphere. Figure 5.2.1 shows, that the Euler angle
parameterization introduces a large distortion to the shape of the confidence
region. Consider, for example, the rotation (n1,Φ,n2) = (82.69E,16.19E,109.78E)
located at the boundary of the 95% confidence region. The Euclidian distance
from this point in Euler space to the center of the confidence region (n1,Φ,n2) =
(84.10E,16.21E,108.21E), the estimate of X, is 2.11E, which is far more than the
rotation angle of 0.45E between the two rotations. This clearly illustrates that the
Euler angle parameterization is inappropriate for describing the uncertainty in
estimated rotations, or more generally, the distance between rotations.
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Figure 5.2.1 95% confidence region expressed in Euler angles (n1,Φ,n2) for an
unknown rotation X determined from 10 bands in an EBSP. Each circle
represents a point on the surface of the confidence region and the gray areas at
the three planes, n1 = 82.25E, M = 16.80E and n2 = 106.50E shows the
projections of the surface.
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(5.2.12)

In many cases, it is convenient to summarize the size of the confidence
region by a single measure of precision ∆ω, as an alternative to the three
quantities ∆ωi. Such a single measure of precision may be obtained from equation
(5.2.11) be setting σi = a, which gives

Hence, this "average" measure of precision, corresponds to the situation where
∆ω1 = ∆ω2 = ∆ω3 and the points ui are uniformly distributed on the unit sphere.
For the example considered above ∆ω = (3/(2@25832)½)@(3.20/10)½ = 0.4278E.

5.3 Results on the Relative Precision of 
Crystal Orientations
Determined from EBSPs
With the statistical methodology introduced above, it is very simple to

determine a statistical measure of the uncertainty in the estimated rotation matrix 
for each EBSP, regardless of whether the bands have been localized automatically
or by a human operator. Equation (5.2.11) shows that the uncertainty ∆ω in , the
relative precision of the crystal orientations g, is dependent on the number of
localized EBSP bands n and on the their precision, described through the
estimated concentration parameter . The second factor of equation (5.2.11),
which depends solely on n, decreases for increasing n as shown in the table 5.3.1.
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n

2 10.3853

3 1.7585

4 1.1629

5 0.9324

6 0.8024

7 0.7158

8 0.6530

9 0.6043

10 0.5654

11 0.5332

Table 5.3.1

If the estimate of concentration parameter of the Fisher distribution  is
independent of the number of bands n that are being used for estimating X and k
(e. g. the precision of all vi's are the same), the uncertainty ∆ω will decrease with
increasing n as described by the second column of table 5.3.1. In practice,
however, it turns out, that the estimated concentration parameter  generally
decreases as n is increased; this effect is most significant for low quality EBSPs.
The reason for this is quite obvious: The position of the bands located first by
either a human operator or by the image processing procedures are likely to be
more precise than the bands localized later. This observation about variations in
the precision of the vi's indicates, that the assumption of a common concentration
parameter k in the Fisher model is not entirely true (it would however greatly
complicate matters if such variations in k should be incorporated into the
modeling of errors; the literature on spherical regression has not yet addressed
such problems). For n fixed, equation (5.2.12) shows that the uncertainty ∆ω is
inversely proportional to the squareroot of , and thus decreases as  increases.
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Since  essentially measures how well the unit vectors vi's fit the spherical
regression model vi = Xui, any deviations from the model will be reflected in .
This means that both errors in the calibration parameters (the pattern center and
the source point to screen distance) and in the positions of the bands are reflected
in the value of . Included in the errors in the position of the EBSP bands are the
errors introduced by distortions in the camera lens. The significance of these
errors is illustrated in figure 5.3.1. The center line of an EBSP band has carefully
been located by an operator in figure 5.3.1, but while the line is positioned very
close to the center of the band at the two line ends, the line is clearly not in the
center of the band at the middle of the line; note the enlarged sub-images placed
on top of the original image. These lens distortions, which are most profound at
the boarders of the EBSP, will inevitably descrease  and increase the expected
uncertainty of the estimated rotations X.

In order to make inference about the relative precision of crystal
orientations determined from EBSPs, 100 patterns from party recrystallized pure
aluminium and 100 patterns from partly recrystallized pure copper were analyzed
both semiautomatically (with the band positions supplied by an experienced
operator) and automatically (with the band positions determined from the image
processing procedures described in section 4). The aim was primarily to compare
the precision of automated analysis with that of semi-automatic analysis; e. g. to
compare the precision of the bands localized automatically with that of the bands
located by a human operator. A secondary aim was to study the effects of image
quality (quantitatively evaluated by the measure Q presented in equation 4.4.5)
and the number of bands used for estimating X on the relative precision ∆ω. For
semi-automatic EBSP analysis, all bands that could be localized with a reasonable
precision were used; viz. from about 8 bands for patterns of very low quality up
to about 11 bands for patterns of higher quality. The center lines of the bands were
very carefully localized (i. e. more precisely than during normal operation) and
ordered  "naturally", with the most prominent bands first. For fully automatic
EBSP analysis, the positions of 11 bands were found as the highest local maxima
in the filtered Hough space (see section 4) and ordered according to the peak
magnitude; possible erroneous bands were of course disregarded from further
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Figure 5.3.1 EBSP from pure copper. The center line of an EBSP band has
been localized by an operator. The enlarged sub-images show the position of
the line relative to the band at three different positions along the line (400×400
pixels).

processing as described in section 3.3. For each pattern and for each set of
manually {vi}M and automatically {vi}A localized bands, the estimate of the
concentration parameter  were determined from the first two bands, the first
three bands, the first four bands and so on. All estimates of the concentration
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(5.3.12)

parameter  where saved to a file together with the number of bands used for the
estimate and the EBSP quality parameter Q described in section 4.4. In order to
study the effect of Q on  (and on the relative precision ∆ω) the patterns were
divided into a number of distinct  classes on the basis of their Q values and a
number of distinct intervals [Qj;Qj+1]. For each class of patterns with similar Q
values, the "average" value of the estimates  obtained from the patterns within
that particular class were found as

where , i = 1,...,N, are the estimates of k for the N patterns in a given class. The
value  is a pooled estimate of the common concentration parameter for N
samples of data (ui,vi), when each sample is of the same size; i. e. equation
(5.3.12) is only valid when all the 's are estimated from the same number of
bands.

The effect of the pattern quality, described quantitatively by Q, on the
relative precision ∆ω, is visualized in figure 5.3.2 for the 100 EBSP obtained from
partly recrystallized pure aluminium. Note, that all the patterns are of a relatively
low quality, Q0[0.438;0.479]. The estimates of the concentration parameter k are
very uncertain for small n (confidence intervals for k may be described, see e. g.
Chang, 1987), and the curves based on only two and three bands are rather
uncertain. Typical values for ∆ω based on only two bands are 8E and 10E for
manually and automatically localized bands respectively. Figure 5.3.2 clearly
displays a strong correlation between the relative precision and the pattern quality
measure Q. The relative uncertainty ∆ω for both manually and automatically
localized bands decreases as the quality parameter Q increases; an effect which
is most distinct when the number of bands n is small. Note, that figure 5.3.2 also
provides a quantitative indication of the value or validity of the EBSP quality
measure Q. Figure 5.3.2 also shows, that automatically localized band generally
are less precise than manually localized bands, and generally provides less precise
estimates of X under the same conditions (the same n and Q). When 10
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Figure 5.3.2 The relative precision ∆ω as a function of the pattern quality
parameter Q for 3, 5, 7 and 10 bands respectively. The curves have been
determined on the basis of 100 EBSPs from partly recrystallized aluminium.

automatically detected bands are being used for estimating X (in automated EBSP
analysis, the computation time is practically not affected by the number bands that
are being localized, and one would therefore choose n large to provide the
smallest uncertainty ∆ω) the relative precision is comparable to the precision
obtained, when 5 bands are localized manually. When an operator carefully
localizes 10 bands, the uncertainty in X is from 0.23E to 0.37E smaller than when
is X estimated from automatically detected bands. Figure 5.3.3 is similar to figure
5.3.2 but is based on 100 EBSP from partly recrystallized copper. These patterns
were generally of a significantly better quality than the patterns from aluminium,
and the quality measure Q for the EBSPs were all in the interval [0.498;0.560]. In
comparison with the curves in figure 5.3.2, figure 5.3.3 indicates, that the
influence of the quality parameter Q on the relative precision ∆ω is less distinct
for patterns of high quality.
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Figure 5.3.3 The relative precision ∆ω as a function of the pattern quality
parameter Q for 3, 5, 7 and 10 bands respectively. The curves have been
determined on the basis of 100 EBSPs from partly recrystallized copper.

Especially for automatically localized bands, the uncertainty ∆ω decreases only
little as the pattern quality measure increases. As with figure 5.3.2, figure 5.3.3
shows, that automatically localized band generally provides less precise estimates
of X than bands carefully localized by a human operator, assuming identical
conditions (the same n and Q). When 10 automatically detected bands are used for
estimating X, the relative precision is comparable with the precision obtained,
when 4 to 5 bands are localized manually. When an operator carefully localizes
10 bands, the uncertainty in X is about 0.35E smaller than when X  is estimated
from 10 automatically detected bands.
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Figure 5.3.4 The relative precision ∆ω as a function of the number of EBSP
bands used for estimating X, for five different measures of the pattern quality Q.
The curves have been determined on the basis of 100 EBSPs from partly
recrystallized aluminium.

The effect of the number of bands n on the relative precision ∆ω is illustrated in
figure 5.3.4 for the 100 EBSPs obtained from partly recrystallized aluminium. As
one would intuitively expect, the uncertainty in the estimated rotation X decreases
rapidly as the number of bands n used for obtaining the estimate is increased. The
influence of n on the values for ∆ω is observed to be very similar for patterns of
varying quality and for bands localized manually and automatically. Figure 5.3.4
also shows, that the benefit from increasing the number of bands used for
estimating X above say 8 is relatively small, notably for manually localized bands.
When all 10 of the automatically localized bands are used for estimating X, the
expected uncertainty is seen to be about 0.25E larger than if the bands had been
localized manually. The corresponding graphs determined on the basis of
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Figure 5.3.5 The relative precision ∆ω as a function of the number of EBSP
bands used for estimating X, for five different measures of the pattern quality Q.
The curves have been determined on the basis of 100 EBSPs from partly
recrystallized copper.

the 100 EBSPs from partly recrystallized copper are seen in figure 5.3.5. These
graphs display basically the same pattern described above, though the graphs for
automatically localized bands has a smaller slope when the number of bands is
above 6; i. e. the benefit from using more than 6 to 7 bands for estimating X is
less distinct for high quality EBSPs (figure 5.3.5) than for EBSPs of lower quality
(figure 5.3.4), when the bands are detected automatically. Figure 5.3.5 shows, that
the highest precision that can be expected for the estimate of X is ∆ω • 0.75E
when the estimate is based on the positions of 11 automatically localized bands,
and the pattern is of a high quality (Q • 0.56). With an EBSP of similar high
quality, the highest precision that can be expected for  is ∆ω • 0.41E when the
estimate is based on 11 bands, which have been carefully localized by a human
operator. These values for the expected relative precision, which reflect the
precision of the band positions (including the uncertainties introduced by image
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distortions) and the uncertainty of the calibration parameters, may be regarded as
characteristic for our EBSP system when the system has been carefully calibrated.
The difference between the relative precision that can be expected for manually
and automatically localized bands shows, that automatically detected bands in
general are less precisely localized that than bands positioned by a careful
operator. In practice, however, one could hardly expect an operator to carefully
point out the positions of 11 bands in each EBSP, due to the extensive amounts
of time and patience this would require. If instead the operator could be expected
to carefully localize 3 or 4 bands in each EBSP, the expected precision for  for
a high quality pattern (Q • 0.56) would be ∆ω • 1.17E and ∆ω • 0.70E for 3 and
4 bands respectively. Hence, it may be concluded, that for high quality patterns,
the relative precision of crystal orientations determined from automatically
analyzed EBSPs is similar to the precision that can be obtained when four bands
are carefully localized by an operator. Figure 5.3.4 and figure 5.3.5 also shows,
that the difference between the relative precision obtained for manually and
automatically localized bands, is slightly smaller for EBSPs of low quality than
for EBSPs of high quality. Where the difference in ∆ω is typically 0.35E for high
quality patterns, the difference is only about 0.20E for patterns of low quality. It
may also be observed, that for low quality patterns, the relative precision of
crystal orientations determined from automatically localized EBSP bands is
similar to the precision that can be obtained when five bands are being carefully
localized by an operator.

The results presented above illustrates the type of information that can be
extracted by performing a statistical analysis of the data (ui,vi) obtained from
EBSPs. This kind of analysis makes it possible to describe the uncertainties ∆ω
in the estimated rotations  (the relative precision of the measured crystal
orientations), study the effects that pattern quality and the number of bands have
on ∆ω, and compare the uncertainties obtained in a fully automated system with
those obtained in a semi-automatic system. Furthermore, it would be possible to
directly compare the precision ∆ω obtained from different image processing
procedures used for extracting the bands of EBSPs, or evaluate the possible
benefit or drawback of certain changes to the current EBSP system. For example,
it would undoubtedly be reflected in the uncertainties ∆ω, if the current camera
system were replaced by a system with no image distortions. It would even be
possible, though probably not very useful, to compare the precision of the
orientation data collected by different operators. A more useful application of the
statistical analysis presented above, would be to determine the relative precision
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∆ω for each EBSP during fully automated EBSP analysis; the calculation of ∆ω
requires very little computing time. By saving the values for ∆ω together with the
estimated crystal orientations g, a very good measure of both precision and
reliability is available when the collected orientation data is to be analyzed. Note,
that if the indexing process - for some reason - has failed for one or several bands,
this will be observed as a very small value for the estimate  (the term |vi!Xui|
will be abnormally large for an incorrectly indexed band) and a very large value
for the uncertainty ∆ω.

The results presented in this section on the relative precision of crystal
orientations determined from EBSPs, can unfortunately not be compared  with
other results reported in the literature (Venables & bin-Jaya, 1977; Harland,
Akhter & Venables, 1981; Dingley, Longden, Weinbren & Alderman, 1987;
Schmidt, Bilde-Sørensen & Juul Jensen, 1991). The values reported for the
relative precision in these references, are either based on a different definition of
the precision concept or based on some not further specified definition. With a
more widespread employment of statistical methods for analysing orientation data,
it will hopefully become easier to compare results obtained by different research
groups in the future.
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Chapter 6

Conclusion
The present thesis has described the development, implementation, and

performance of an automatic technique for measuring crystallographic
orientation with high spatial resolution in polycrystalline materials from
electron backscattering patterns (EBSPs). The main results presented in this
work will be summarized shortly in the following.

An image recognition procedure which enables the localization of 8 to
12 bands in typical EBSPs has been developed. The procedure is based on the
Hough transform and can be implemented in a computationally efficient way.
The ability of the procedure to correctly and precisely localize the bands of
EBSPs has been demonstrated, even in the case of very low quality patterns.

A fully automatic procedure which determines the indices of the
reflected EBSP bands has been described. This indexing procedure is robust
in the presence of erroneous band positions and computationally efficient. It
allows bands, which have been poorly localized, to be disregarded from
further processing.

When a number of the EBSP bands have been automatically localized
and indexed, the orientation of the crystal can be determined. A procedure,
which allows the orientation of the crystal to be calculated in an optimal (in
a least squares sense) way, has been devised. The procedure is not new but
seem to be unknown in this scientific area.

The problem of measuring or estimating the calibration parameters of
an EBSP set-up is thoroughly discussed in this thesis. A novel calibration
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procedure based on the positions and indices of at least four bands or zone
axes in an arbitrary EBSP has been developed. The procedure eliminates the
need for special calibration specimens or specialized attachments to the EBSP
system. The accuracy by which the calibration parameters can be determined
with this procedure is shown to be competitive with that of other procedures.

A simple quantitative measure of the quality of EBSPs has been
developed. This measure requires very little computation and is shown to
agree well with the pattern quality as it is perceived by the human eye. The
possibility of applying this measure for automated recognition of deformed
and recrystallized areas in partly recrystallized samples has been studied, and
promising preliminary results have been obtained. The measure has also been
shown to be correlated with the relative precision of the measured crystal
orientations.

By combining automated localization and indexing of EBSP bands with
a computer-controlled motorized microscope stage, a fully automatic system
for measuring the microtexture of polycrystals has been obtained. The
reliability and precision of the crystal orientations, which can be collected
with such a system, is, of course, of great importance. The reliability of the
automatically determined crystal orientations could be defined and measured
as the fraction of orientations which has a distance - rotation angle - larger
than some given threshold (e. g. 5E) from the manually determined
orientations. Such a quantitative analysis of the reliability of the automated
system has not yet been performed, since it would require the measurements
(both manually and automatically) of a very large number of crystallites.
Practical experience with automated measurements, however, has shown the
system to be very robust and reliable. The precision of both manually and
automatically measured crystal orientations has been thoroughly discussed in
this thesis. In particular, results on the relative precision of the estimated
crystal orientations have been presented. The use of newly developed
statistical methods for analyzing orientation data, has made it possible to
compare the precision of manually and automatically measured crystal
orientations, as well as studying the effect which the number of bands and the
pattern quality has on the precision. Typical values for the relative precision
of crystal orientations measured from EBSPs are shown to be of the order of
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-0.5E for manually localized bands and -0.8E for automatically localized
bands, when about 10 EBSP bands are used for the measurements. It must,
therefore, be concluded that an experienced and careful human operator is
able to localize the EBSP bands with a higher precision than the current
pattern recognition procedure. In practice, however, the patience and valuable
time of the operator limit the number of bands which he or she is willing to
localize to less than typically 5. In this more realistic situation, the relative
precision of the measured crystal orientations obtained for automatically
analyzed patterns is - at least - as good as when the patterns have been
analyzed semi-automatically. It may, therefore, be concluded that the
automated system described in this thesis is capable of measuring crystal
orientations with a precision which compares well with the precision obtained
by a typical operator of a semi-automatic system.
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